Practice test 2

The actual exam will consist of 6 multiple choice questions and 6 regular problems. You will have 50 minutes to complete the exam.

Multiple choice questions: circle the correct answer

1. Solve for x: $\log_{\frac{1}{2}} x = 3$.

A. 6

B. $\frac{1}{6}$

C. 8

D. $\frac{1}{8}$

E. None of the above

2. How many vertical asymptotes does the curve $y = \frac{x+1}{x(x+2)(x+3)}$ have?

A. 0

B. 1

E. 4

 $3. \lim_{x \to 2} \frac{5}{x - 2} =$

A. 0

B. 5

 $\mathbf{C.} \infty$

D. $-\infty$

E. Does not exist

4. $\lim_{x \to -\infty} \frac{x+2}{3x+4} =$

A. 1

B. $\frac{1}{2}$

C. $\frac{1}{3}$

D. 0

E. Does not exist

5. The function $f(x) = \begin{cases} -x - 1 & \text{if } x < -1 \\ 0 & \text{if } -1 \le x \le 1 \\ x & \text{if } x > 1 \end{cases}$

A. continuous everywhere

B. continuous at 1 but discontinuous at -1

C. continuous at -1 but discontinuous at 1

D. continuous at all points except for 1 and -1

E. discontinuous everywhere

6. Find the rate of change of y = 3x + 5 at x = 4.

A. 3

B. 4

C. 5

D. 17

E. None of the above

7. Find the equation of the line tangent to the curve $y=x^2$ at (2,4).

A. y = 4x **B.** y = 4x - 4 **C.** y = 4x + 4 **D.** y = -4x **E.** y = -4x - 4

Regular problems: show all your work

8. Solve the following equations:

(a)
$$\ln(5x - 2) = 3$$

(b)
$$e^{3t+1} = 100$$

(c)
$$\log_2 t + \log_2(t+1) = 1$$

(d)
$$10^{4x+1} = 300$$

9. Evaluate the limits:

(a)
$$\lim_{x \to 5} (7x - 25)$$

(b)
$$\lim_{x \to -1} \frac{x^3 + x^2}{x^2 + 3x + 2}$$

(c)
$$\lim_{x\to 0} \frac{3-\sqrt{9+x}}{x}$$

(d)
$$\lim_{x \to 2^+} \frac{x^3 - 2}{x^2 - x - 2}$$

(e)
$$\lim_{x \to 2^{-}} \frac{x^3 - 2}{x^2 - x - 2}$$

(f)
$$\lim_{x \to 2} \frac{x^3 - 2}{x^2 - x - 2}$$

(g)
$$\lim_{x\to 0} x^4 \cos\left(\frac{1}{x}\right)$$

(h)
$$\lim_{x \to \infty} \frac{5x^3 - x - 3}{4x^3 + 3x^2 - 3}$$

(i)
$$\lim_{x \to -\infty} \frac{5x^2 - x - 3}{4x^3 + 3x^2 - 3}$$

(j)
$$\lim_{x \to \infty} \frac{5x^3 - x - 3}{4x^2 + 3x - 3}$$

(k)
$$\lim_{x \to \infty} \frac{\sqrt{4x^2 + 5}}{3x - 3}$$

(1)
$$\lim_{x \to -\infty} \frac{\sqrt{4x^2 + 5}}{3x - 3}$$

(m)
$$\lim_{x \to \infty} (3 - x + 2x^2 - 5x^3)$$

(n)
$$\lim_{x \to -\infty} (3 - x + 2x^2 - 5x^3)$$

10. Show that the equation $x^5 - 4x + 2 = 0$ has at least one solution in the interval (1, 2).

2

11. Find all values of c such that the function

(a)
$$f(x) = \begin{cases} cx & \text{if } x \ge 2\\ 5 - x & \text{if } x < 2 \end{cases}$$

(b)
$$f(x) = \begin{cases} x^2 & \text{if } x \le c \\ x^3 & \text{if } x > c \end{cases}$$

is continuous everywhere.

- 12. Find the vertical and horizontal asymptotes of $f(x) = \frac{(x+2)(3x-4)}{(x-5)(x+7)}$.
- 13. Find the following derivatives:

(a)
$$f'(1)$$
 if $f(x) = 5$

(b)
$$f'(2)$$
 if $f(x) = 7x - 3$

(c)
$$f'(3)$$
 if $f(s) = s^2 + 5s - 6$

(d)
$$f'(4)$$
 if $f(t) = \sqrt{t}$

(e)
$$f'(5)$$
 if $f(x) = \frac{2}{x}$