Practice test 3

The actual exam will consist of 6 multiple choice questions and 6 regular problems. You will have 50 minutes to complete the exam.

Multiple choice questions: circle the correct answer

1. Find the derivative of $\sqrt{2x}$.

A.
$$\frac{2}{\sqrt{x}}$$

B.
$$\frac{2}{\sqrt{2x}}$$

C.
$$\frac{1}{2\sqrt{x}}$$

A.
$$\frac{2}{\sqrt{x}}$$
 B. $\frac{2}{\sqrt{2x}}$ C. $\frac{1}{2\sqrt{x}}$ D. $\frac{1}{\sqrt{2x}}$ E. $\frac{1}{2\sqrt{2x}}$

$$\mathbf{E.} \ \frac{1}{2\sqrt{2x}}$$

2. Evaluate the limit: $\lim_{x\to 0} \frac{\sin(3x)}{5x}$

A. 0

B. 0.6

C. $\frac{1}{5}$

D. $\frac{5}{3}$

E. Does not exist

3. Simplify the expression: $\frac{8x^3\sqrt{x}}{(3x^2)^2 + 7x^4}$

A.
$$\frac{8\sqrt{x}}{10x^2}$$
 B. $\frac{\sqrt{x}}{2}$ C. $\frac{1}{2\sqrt{x}}$ D. $\frac{4}{5\sqrt{x}}$

B.
$$\frac{\sqrt{x}}{2}$$

C.
$$\frac{1}{2\sqrt{x}}$$

D.
$$\frac{4}{5\sqrt{x}}$$

E. $4\sqrt{x}$

4. The position of an object at time t is given by $s(t) = 4\sin(t) + 2\cos(t)$. Find the velocity of this object at $t = \frac{\pi}{3}$.

A.
$$1 + \sqrt{3}$$

B.
$$1 + 2\sqrt{3}$$

C.
$$1 - 2\sqrt{3}$$
 D. $2 + \sqrt{3}$

D.
$$2 + \sqrt{3}$$

E. $2 - \sqrt{3}$

5. Find the equation of the line tangent to the curve $y = x^2 + 4x + 4$ at (1, 9).

A.
$$y = 9x$$

B.
$$y = 6x - 15$$

C.
$$y = 6x + 3$$

C.
$$y = 6x + 3$$
 D. $y = 2x + 1$

E. None of the above

6. If f(3) = 2, f'(3) = 4, g(3) = 5, and g'(3) = 6, then the derivative of $\frac{f(x)}{g(x)}$ at x = 3 is $\left(\frac{f}{a}\right)'(3) =$

B.
$$2/3$$

B.
$$2/3$$
 C. $-8/25$

E. Undefined

7. If $f(x) = 4^{3x}$, find f'(x).

$$\mathbf{A}$$
 4^{3x}

A.
$$4^{3x}$$
 B. $3 \cdot 4^{3x}$

C.
$$12^{3x}$$

D.
$$\ln(4)4^{3x}$$

E.
$$3\ln(4)4^{3x}$$

Regular problems: show all your work

8. Differentiate the following functions:

(a)
$$f(x) = 7x - 3$$

(b)
$$p(s) = s^5 - 2s^4 + 3s^3 - 4s^2 + 5s - 6$$

(c)
$$f(t) = \frac{3t^2 - 5t + 1}{\sqrt{t}}$$

(d)
$$g(x) = x^2 - \frac{x^3}{\sqrt[4]{x}} + \frac{3}{x}$$

(e)
$$q(y) = \frac{y^2 + y + 1}{y + 1}$$

(f)
$$y = 3\sin(x^5) + \frac{\pi}{2}$$

(g)
$$f(x) = \cos(4)(x^3 - 3x)$$

(h)
$$g(x) = \frac{x^3 - 5}{\cos(-x)}$$

(i)
$$h(x) = \tan(x) \left(\frac{1}{\sqrt[4]{x^3}} + \frac{2}{x} \right)$$

(j)
$$f(t) = 5e^x - 8 \cdot 3^x + 9x^2$$

9. Find the points where the tangent line to the graph of $f(x) = x^5 - 80x$ is horizontal.

10. Find an equation of the tangent line to $y = \sqrt{2x+3}$ at (3,3).

11. Evaluate the limits:

(a)
$$\lim_{x \to 0} \frac{\sin(6x)}{\sin(7x)}$$

(b)
$$\lim_{x \to 0} \frac{2x}{\tan(4x)}$$

(c)
$$\lim_{x\to 0} \tan(5x) \csc(x)$$

12. Solve for $\frac{dy}{dx}$: $5x\left(8y\frac{dy}{dx} + x^2\right) = 7\frac{dy}{dx} - 3xy^3$.

13. Consider the curve given by $x^3y^3 - 3xy^3 + 4y = 6$.

- (a) Use implicit differentiation to find y'(x).
- (b) Check that the point (2,1) lies on this curve.
- (c) What is the slope of the tangent line to this curve at (2,1)?

14. A snowball is melting (so it is decreasing). Find the rate of decrease of its volume with respect to the radius when the radius is 3 cm. (Recall that the volume of a ball is $V = \frac{4}{3}\pi r^3$.)

2