MATH 75B

Final Exam - Version 2

May 16, 2011

Name:

- Please turn off your cell phones and any other electronic devices.
- Write your name both on the exam and on the scantron form. Also please write the exam version in the field "TEST NO."
- No notes, books, or calculators are allowed.
- You may write on the exam. If you need additional scratch paper, the instructor has some.
- You have to turn in your scantron form and all your scratch paper. You may keep the exam

- 1. Differentiate $f(x) = \arctan(2x^2)$.
 - (a) $\frac{x}{1+x^4}$
 - $\begin{array}{c} \text{(b)} \quad \frac{1}{1+4x^4} \\ \text{(c)} \quad \frac{4x}{1+4x^4} \end{array}$

 - (d) $\frac{1}{1+x^3}$
 - (e) $\frac{2}{1+x^4}$

- 2. How many absolute maximum and minimum points does $x^3 3x + 1 = 0$ have?
 - (a) none
 - (b) 1
 - (c) 2
 - (d) 3
 - (e) none of the above

- 3. Evaluate the integral: $\int \frac{1}{\sqrt{x}} dx$
 - (a) $\sqrt{x} + C$
 - (b) $2\sqrt{x} + C$
 - (c) $\frac{2}{3}\sqrt{x^3} + C$
 - (d) $\frac{2}{3x^{\frac{3}{2}}} + C$
 - (e) none of the above

- 4. A particle moves along a straight line so that its velocity is $v(t) = \sqrt{t+1}$. Find its displacement during the time interval [0,3].
 - (a) 0
 - (b) $-\frac{7}{3}$
 - (c) $\frac{7}{3}$
 - (d) $-\frac{14}{3}$
 - (e) $\frac{14}{3}$
- 5. Find the domain of the function $f(x) = \sqrt{\frac{2}{x-3}}$.
 - (a) x = 3
 - (b) $x \neq 0$
 - (c) $x \neq 3$
 - (d) $x \ge 3$
 - (e) x > 3
- 6. Evaluate $\lim_{x\to 3} \frac{x^2 x 6}{x^2 9}$.
 - (a) 0
 - (b) 1
 - (c) $\frac{5}{6}$
 - (d) ∞
 - (e) $-\infty$
- 7. Evaluate $\arcsin(\sin(0.8\pi))$.
 - (a) -1.2π
 - (b) -1.8π
 - (c) 0.2π
 - (d) 1.8π
 - (e) none of the above

- 8. Which of the following statements is true about the function $y = \ln x$?
 - (a) Its value is always positive
 - (b) It is decreasing
 - (c) Its graph is concave downward
 - (d) It is defined everywhere except x = 0
 - (e) Its graph has no intercepts

- 9. Find the slope of the tangent line to the curve $3x xy + y^4 = 3y$ at the point (-10, 2).
 - (a) -13
 - (b) $-\frac{1}{39}$
 - (c) 0
 - (d) $\frac{1}{3}$
 - (e) 16

- 10. The size of a bacteria population at t=0 is 60. Its size at t=2 is 240. What is its size at t=5?
 - (a) 510
 - (b) $450 \ln 2$
 - (c) $180e^{\frac{5}{2}}$
 - (d) 1920
 - (e) none of the above

- 11. How many local maxima does the graph of $y = 3 + \cos(2x)$ have?
 - (a) 0
 - (b) 1
 - (c) 2
 - (d) 3
 - (e) infinitely many

- 12. Find the absolute maximum value of the function $y = x^3 12x + 4$ on the interval [-1, 4].
 - (a) -12
 - (b) 0
 - (c) 2
 - (d) 15
 - (e) 20

- 13. Evaluate $\sin\left(\arccos\left(-\frac{3}{5}\right)\right)$.
 - (a) $-\frac{4}{5}$ (b) $-\frac{3}{5}$

 - (c) $\frac{1}{5}$
 - (d) $\frac{2}{5}$
 - (e) none of the above

14. How many inflection points does the graph of $y = x^4 - 4x^3 + 6x^2 - 8x + 10$ have?

- (a) 0
- (b) 1
- (c) 2
- (d) 3
- (e) 4

15. Find the average value of $f(x) = x \cos x$ on $[-\pi, \pi]$

- (a) -2
- (b) $-\frac{\pi}{2}$
- (c) 0
- (d) 1
- (e) π

16. Evaluate $\int_0^1 4x \sin(x^2 - 1) dx.$

- (a) 0
- (b) 1
- (c) $4\cos(1)$
- (d) $2\cos(1) 2$
- (e) $2\cos(-1) + 2$

- 17. If we use Newton's method to approximate the root of the equation $x^3 + 4x 3 = 0$ starting with $x_1 = 1$, then $x_2 = 0$
 - (a) $-\frac{5}{2}$
 - (b) $\frac{5}{7}$
 - (c) $\frac{1}{2}$
 - (d) $\frac{9}{7}$
 - (e) none of the above

- 18. Evaluate $\int_0^3 \sqrt{9 x^2} dx$
 - (a) 1.5π
 - (b) 2.25π
 - (c) 3π
 - (d) $9\pi^2$
 - (e) none of the above

- 19. Find the horizontal asymptote for the graph of the function $f(x) = \frac{6x^2 + 5x 3}{x^2 + 2x^2 + 1}$.
 - (a) x = -1
 - (b) x = 0
 - (c) y = -3
 - (d) y = 0
 - (e) y = 6

20. Find the height of the rectangle enclosing the largest possible area that can be inscribed in a semicircle of radius 1 as pictured.

- (a) $\frac{1}{2}$
- (b) $\frac{3}{4}$
- (c) $\frac{1}{\sqrt{3}}$
- (d) $\frac{1}{\sqrt{2}}$
- (e) $\frac{\sqrt{3}}{2}$
- 21. The height of a triangle is increasing at a rate of 1 cm/min while the area of the triangle is increasing at a rate of $2 \text{ cm}^2/\text{min}$. At what rate is the base of the triangle changing when the height is 10 cm and the area is 100cm^2 ?
 - (a) -1.6 cm/min
 - (b) -0.8 cm/min
 - (c) 0.4 cm/min
 - (d) 1.2 cm/min
 - (e) none of the above
- 22. If $\int_0^2 f(x)dx = 8$ and $\int_2^5 f(x)dx = 4$, find $\int_0^5 f(x)dx$.
 - (a) -4
 - (b) 0
 - (c) 4
 - (d) 12
 - (e) 32

- 23. Which of the following is an antiderivative of $2x + 3\cos x + 4\sin x$?
 - (a) $2 3\sin x + 4\cos x$
 - (b) $2 3\sin x + 4\cos x + C$
 - (c) $x^2 + 3\sin x 4\cos x$
 - (d) $x^2 3\sin x + 4\cos x$
 - (e) $x^2 + 3\sin x + 4\cos x + C$

- 24. Evaluate $\lim_{x\to 0} \arccos(x)$
 - (a) 0
 - (b) $\frac{\pi}{2}$
 - (c) π
 - (d) 2π
 - (e) none of the above

25. Which of the following is equal to the area under the curve y = |x - 4| between x = 0 and x = 6?

(a)
$$\int_0^6 (x-4)dx$$

(b)
$$-\int_0^6 (x-4)dx$$

(c)
$$\int_{4}^{6} (x-4)dx$$

(d)
$$\int_0^4 (x-4)dx + \int_4^6 (4-x)dx$$

(e)
$$\int_0^4 (4-x)dx + \int_4^6 (x-4)dx$$