## **MATH 75**

Test 1

September 26, 2003

| TA T     |  |  |  |
|----------|--|--|--|
| Name:    |  |  |  |
| INAIIIE: |  |  |  |
|          |  |  |  |

| Problem | Value | Score |
|---------|-------|-------|
| 1       | 3     |       |
| 2       | 3     |       |
| 3       | 3     |       |
| 4       | 3     |       |
| 5       | 3     |       |
| 6       | 3     |       |
| 7       | 5     |       |
| 8       | 5     |       |
| 9       | 5     |       |
| 10      | 5     |       |
| 11      | 6     |       |
| 12      | 6     |       |
| Total   | 50    |       |

## Multiple choice questions: circle the correct answer

1. Find domain of the function  $f(x) = \sqrt{x+1}$ .

**A.** x > 0 **B.**  $x \ge 0$  **C.**  $x \ge 1$  **D.**  $x \ge -1$  **E.**  $x \ne -1$ 

2. If  $f(x) = (x+1)^2$  and g(x) = 2x - 6, find  $f \circ g(x)$ .

**A.**  $2x^2 + 4x - 4$  **B.**  $4x^2 + 8x - 5$  **C.**  $4x^2 - 20x + 25$  **D.**  $4x^2 - 24 + 36$ 

- **E.** None of the above
- 3. Evaluate the limit:  $\lim_{x\to 5^+} \frac{|x-5|}{x-5}$ .

**A**. 1

**B.** -1

 $\mathbf{C.}\ 0$ 

 $\mathbf{D}. -\infty$ 

**E.** Does not exist

4. Find the derivative of  $3x^5$ .

**A.**  $8x^4$  **B.**  $8x^5$  **C.**  $15x^4$  **D.**  $\frac{3(x+h)^5 - 3x^5}{h}$  **E.** Does not exist

5. Find the equation of the line tangent to the curve  $y = \frac{1}{x}$  at  $(2, \frac{1}{2})$ .

**A.**  $y = -\frac{1}{2}x + \frac{3}{2}$  **B.**  $y = -\frac{1}{4}x + 1$  **C.**  $y = \frac{1}{2}x - \frac{1}{2}$  **D.**  $y = \frac{1}{2}x + \frac{1}{2}$ 

- **E.** None of the above
- 6. If f(3) = 4, f'(3) = 5, g(3) = 6, and g'(3) = 7, find the derivative of the product f(x)g(x) at x=3.

 $\mathbf{A.}\ 0$ 

**B.** 12

**C.** 35

**D.** 58

E. Does not exist

## Regular problems: show all your work

7. Sketch the graph of  $f(x) = 5 - x^2$ .



8. Show that the equation  $x^3 + 7x + 4 = 0$  has a root in the interval [-1, 1].

9. Evaluate the limit:  $\lim_{x\to 0} \frac{x^2-x}{x^2+x}$ . If the limit is infinite, determine whether it is  $+\infty$  or  $-\infty$ .

10. Evaluate the limit:  $\lim_{x\to 5^+} \frac{x}{x^2-11x+30}$ . If the limit is infinite, determine whether it is  $+\infty$  or  $-\infty$ .

11. Let 
$$f(x) = \begin{cases} -x - 2 & \text{, if } x < -1 \\ x & \text{, if } -1 \le x \le 1 \\ 2x - 2 & \text{, if } x > 1 \end{cases}$$
  
Sketch the graph of  $f(x)$ .



Is f(x) coninuous at -1?

Is f(x) continuous at 1?

12. Find the derivative of the function  $f(x) = \frac{x^5 - \sqrt{x}}{\frac{1}{x^2} + 4x^3}$ . You do not have to simplify your derivative.