MATH 75

Test 2 - Solutions

Multiple choice questions: circle the correct answer

1.	Find the	${\it derivative}$	of the	function	f(x) =	$\sqrt{x^2-1}$.
----	----------	--------------------	--------	----------	--------	------------------

A.
$$\frac{1}{2x\sqrt{x^2-1}}$$
 B. $\frac{1}{2\sqrt{x^2-1}}$ C. $\frac{1}{\sqrt{x^2-1}}$ D. $\frac{x}{\sqrt{x^2-1}}$ E. $2x\sqrt{x^2-1}$

B.
$$\frac{1}{2\sqrt{x^2-1}}$$

C.
$$\frac{1}{\sqrt{x^2-1}}$$

E.
$$2x\sqrt{x^2-1}$$

2. Find the vertical and horizontal asymptotes for the function $f(x) = \frac{x}{x^2 - 1}$.

A.
$$x = 1, x = -1$$

B.
$$x = 1, y = 0$$

A.
$$x = 1, x = -1$$
 B. $x = 1, y = 0$ **C.** $x = 0, y = 1, y = -1$ **D.** $x = 0, y = 1$

D.
$$x = 0, y = 1$$

E.
$$x = 1, x = -1, y = 0$$

3. Evaluate the limit: $\lim_{x \to \infty} \frac{9 - x^2}{5 + x}$.

$$(\mathbf{A}) - \infty$$

B.
$$-5$$

$$\mathbf{C.}\ 0$$

$$\mathbf{E}. \infty$$

4. If $f(x) = \sin^2(x)$, find $f'\left(\frac{\pi}{4}\right)$.

$$A. -2$$

B.
$$-1$$

D.
$$\frac{1}{2}$$

5. The graph of $y = 2x^3 - x^4$ has how many local maximums?

6. Find the inflection point(s) of the graph of $y = 2x^3 - x^4$.

A.
$$(0,0)$$
 only

A.
$$(0,0)$$
 only **B.** $(1,1)$ only

C.
$$\left(\frac{3}{2}, \frac{27}{16}\right)$$
 only D. $(0,0)$ and $(1,1)$

$$(0,0)$$
 and $(1,1]$

E.
$$(0,0)$$
 and $\left(\frac{3}{2}, \frac{27}{16}\right)$

Regular problems: show all your work

7. Evaluate the limit: $\lim_{x \to -\infty} \frac{\sqrt{5x^2 + 4}}{3x + 2}$

$$= \lim_{x \to -\infty} \frac{\frac{\sqrt{5x^2 + 4}}{x}}{\frac{3x + 2}{x}} = \lim_{x \to -\infty} \frac{\frac{\sqrt{5x^2 + 4}}{-\sqrt{x^2}}}{3 + \frac{2}{x}} = \lim_{x \to -\infty} \frac{-\sqrt{\frac{5x^2 + 4}{x^2}}}{3 + \frac{2}{x}} = \lim_{x \to -\infty} \frac{-\sqrt{5 + \frac{4}{x^2}}}{3 + \frac{2}{x}} = -\frac{\sqrt{5}}{3}$$

8. Find the linear approximation of the function $f(x) = \frac{1}{x^2}$ at a = -1.

$$L(x) = f(-1) + f'(-1)(x - (-1)).$$

$$f(-1) = \frac{1}{(-1)^2} = 1.$$
 $f'(x) = \frac{-2}{x^3}$, so $f'(-1) = \frac{-2}{(-1)^3} = 2$.

Therefore the linear approximation is L(x) = 1 + 2(x+1) = 2x + 3.

9. Find the intervals of increase and decrease of the function $f(x) = 4x^3 - 3x^2 - 1$.

$$f'(x) = 12x^2 - 6x = 6x(2x - 1)$$
. The derivative is 0 at $x = 0$ and at $x = \frac{1}{2}$.

Now consider each interval:

On the interval $(-\infty,0)$ the derivative is positive, thus f(x) is increasing.

On the interval $\left(0,\frac{1}{2}\right)$ the derivative is negative, thus f(x) is decreasing.

On the interval $\left(\frac{1}{2}, +\infty\right)$ the derivative is positive, thus f(x) is increasing.

10. The volume of a sphere of radius r is $V = \frac{4}{3}\pi r^3$. Air is pumped into a spherical balloon at the rate of 100 cm^3 per second. How fast is the radius of the balloon increasing when the radius is 10 cm?

Differentiating both sides of $V = \frac{4}{3}\pi r^2$ with respect to t, remembering that both V and r are functions of t (time), gives $V' = \frac{4}{3}\pi 3r^2r'$, or $V' = 4\pi r^2r$.

We are given that V' = 100 (air is pumped at the rate of 100 cm³ per second) and that r = 10 (... when the radius is 10 cm), therefore we have

2

$$100 = 4\pi 10^2 r'$$

$$1 = 4\pi r'$$

$$r' = \frac{1}{4\pi}$$

Thus the radius is increasing at a rate of $\frac{1}{4\pi}$ cm per second.

11. Find the absolute maximum and minimum values of $f(x) = (x^2 - 1)^3$ on the interval [-1, 2].

First find the critical numbers. $f'(x) = 3(x^2 - 1)^2 2x = 6x(x^2 - 1)^2$. The derivative is defined everwhere. Find the points where it is equal to θ :

$$6x(x^2 - 1)^2 = 0$$

$$6x((x-1)(x+1))^2 = 0$$

$$6x(x-1)^2(x+1)^2 = 0$$

$$x = 0 \text{ or } x = 1 \text{ or } x = -1.$$

Thus 0, 1, and -1 are critical values of f(x).

Now find the values of the function at the critical numbers and at the endpoints of the interval.

$$f(0) = -1, f(1) = 0, f(-1) = 0, f(2) = 27.$$

The largest of these values (27) is the absolute maximum value, and the smallest (-1) is the absolute minimum value.

12. Find an equation of the tangent line to the curve $xy^2 + 3xy = 4$ at the point (1,1).

First differentiate both sides of the equation with respect to x treating y as a function of x:

$$y^2 + x2yy' + 3y + 3xy' = 0$$

Now plug in x = 1 and y = 1:

$$1 + 2y' + 3 + 3y' = 0$$

$$5y' = -4$$

$$y' = -\frac{4}{5}$$

Thus the slope of the tangent line is $-\frac{4}{5}$. The tangent line passes throught the point (1,1), so its equation is

$$y - 1 = -\frac{4}{5}(x - 1)$$

$$y = -\frac{4}{5}x + \frac{4}{5} + 1$$

$$y = -\frac{4}{5}x + \frac{9}{5}$$