Test 3 - Solutions

Multiple choice questions: circle the correct answer

1. Which of the following in an antiderivative of $f(x) = 1 + \sin x$?

 $\mathbf{A.} \cos x$

 $\mathbf{B.} \ 1 - \cos x$

C. $x + \cos x$ D $1 + x - \cos x$ E. $-x \cos x$

2. $\int_0^1 \sqrt{1-x^2} \, dx =$

A. -1

B. 0

 $\bigcirc \frac{\pi}{4}$ D. $\frac{\pi}{2}$

E. 1

 $3. \int \sqrt{2x+1} \, dx =$

A. $\frac{1}{2\sqrt{2x+1}} + C$ B. $\frac{1}{\sqrt{2x+1}} + C$ C. $\frac{(2x+1)^{3/2}}{6} + C$ D. $\frac{(2x+1)^{3/2}}{3} + C$

4. If $f(x) = \int_0^x \sqrt{t^2 + 1} dt$, then f'(x) =

A. $\frac{\sqrt{x^2+1}}{2}$ **B.** $x\frac{\sqrt{x^2+1}}{2}$ **C.** $\sqrt{x^2+1}$ **D.** $x\sqrt{x^2+1}$ **E.** $\sqrt{x^2+1}-1$

5. Use Newton's Method to approximate the root of $x^3 - 6x + 4 = 0$. Let $x_1 = 1$. Find x_2 .

A. -2

B. 0

 $\bigcirc \frac{2}{3}$ D. $\frac{4}{3}$

E. 4

6. Find the average value of the function $f(x) = \sin(2x)$ on the interval $\left[0, \frac{\pi}{4}\right]$.

A. $-\frac{2}{\pi}$ **B.** $-\frac{1}{2}$

C. 0 D. $\frac{1}{2}$

Regular problems: show all your work

7. A box with a square base and open top must have a volume of 4,000 cm³. Find the dimensions of the box that minimize the amount of material used.

Let the length and the width of the box be x and let the height be y. Then the surface area (which we have to minimize) is $A = x^2 + 4xy$, and the volume is $V = x^2y = 4000$. Solve the second equation for y: $y = \frac{4000}{x^2}$ and substitute into the first equation. Now $A(x) = x^2 + \frac{4x \cdot 4000}{x^2} = x^2 + \frac{16000}{x}$. To find the minimum, take the derivative and set it equal to 0: $A'(x) = 2x - \frac{16000}{x^2} = 0$. $2x = \frac{16000}{x^2} \Rightarrow 2x^3 = 16000 \Rightarrow x^3 = 8000 \Rightarrow x = 20$. The derivative of the surface area

The derivative changes from negative to positive at 20, so this is a minimum.

Then $y = \frac{4000}{x^2} = \frac{4000}{400} = 10$. Thus the box must have length 20 cm, width 20 cm, and height 10cm.

8. If $f'(x) = 10x^4 + 8x^3 + 6x^2 + 4$ and f(-1) = 2, find f(x).

First find the general antiderivative: $f(x) = 2x^5 + 2x^4 + 2x^3 + 4x + c$. Now use the condition f(-1) = 2 to find c:

f(-1) = -2 + 2 - 2 - 4 + c = 2, then c = 8. Therefore $f(x) = 2x^5 + 2x^4 + 2x^3 + 4x + 8$.

9. Find the area of the region under the graph of $f(x) = \frac{1}{x^2}$ from x = 1 to x = 2.

Area = $\int_{1}^{2} \frac{1}{x^{2}} dx = \int_{1}^{2} x^{-2} dx = \frac{x^{-1}}{-1} \Big|_{1}^{2} = -\frac{1}{x} \Big|_{1}^{2} = -\frac{1}{2} + 1 = \frac{1}{2}.$

10. Find the volume of the solid obtained by rotating about the x-axis the region enclosed by $y = 1 - x^2$ and the x-axis.

The intersection points of the parabola and the x-axis are x = 1 and x = -1. Notice that the region is symmetric about the y-axis, so we will find the volume of the right half of the solid, and then multiply it by 2. Thus we will integrate with respect to x from 0 to 1. Each

cross-section is a disk, therefore Volume = $2\left(\int_0^1 \pi (1-x^2)^2 dx\right) = 2\pi \int_0^1 (1-2x^2+x^4) dx =$

 $2\pi \left(x - \frac{2x^2}{3} + \frac{x^5}{5} \right) \Big|_{0}^{1} = 2\pi \left(1 - \frac{2}{3} + \frac{1}{5} \right) = 2\pi \frac{15 - 10 + 3}{15} = \frac{16\pi}{15}.$

11. Find the area of the region enclosed by $x = 2y - y^2$ and $x = y^2 - 2y$.

First find the intersection points: $2y - y^2 = y^2 - 2y$

$$4y - 2y^2 = 0$$

$$2y(2-y) = 0$$

y=0 and y=2. Thus we will integrate with respect to y from 0 to 2. If y=1, then the first function has value 1, and the second function has value -1, thus the first function is the right one, and the second function is the left one. Now,

 $Area = \int_0^2 (2y - y^2) - (y^2 - 2y) dy = \int_0^2 (4y - 2y^2) dy = \left(2y^2 - \frac{2y^3}{3}\right)\Big|_0^2 = 8 - \frac{16}{3} = \frac{8}{3}.$

12. Find the volume of the solid obtained by rotating about x=1 the region under the graph of $f(x) = \sqrt{x}$ from x = 1 to x = 4.

Use cylindrical shells. The radius of a cylindrical shell is x-1, and the height is \sqrt{x} . Therefore

$$Volume = 2\pi \int_{1}^{4} (x-1)\sqrt{x}dx = 2\pi \int_{1}^{4} (x^{3/2} - x^{1/2})dx = 2\pi \left(\frac{2x^{5/2}}{5} - \frac{2x^{3/2}}{3}\right)\Big|_{1}^{4}$$
$$= 2\pi \left(\frac{64}{5} - \frac{16}{3} - \frac{2}{5} + \frac{2}{3}\right) = 2\pi \left(\frac{62}{5} - \frac{14}{3}\right) = 2\pi \frac{186 - 70}{15} = 2\pi \frac{116}{15} = \frac{232\pi}{15}.$$

2

- Good luck on the final!
- Have a nice winter break!