MATH 75

Test 3

December 10, 2003

TN T			
Name:			

• Check all your answers before you turn in this test!

Problem	Value	Score
1	3	
2	3	
3	3	
4	3	
5	3	
6	3	
7	5	
8	5	
9	5	
10	5	
11	6	
12	6	
Total	50	

Multiple choice questions: circle the correct answer

1. Which of the following in an antiderivative of $f(x) = 1 + \sin x$?

 $\mathbf{A} \cdot \cos x$

B. $1 - \cos x$

C. $x + \cos x$ **D.** $1 + x - \cos x$

 $\mathbf{E}_{\cdot} - x \cos x$

2. $\int_{0}^{1} \sqrt{1-x^2} \, dx =$

A. -1

B. 0

C. $\frac{\pi}{4}$

D. $\frac{\pi}{2}$

E. 1

 $3. \int \sqrt{2x+1} \, dx =$

A. $\frac{1}{2\sqrt{2x+1}} + C$ B. $\frac{1}{\sqrt{2x+1}} + C$ D. $\frac{(2x+1)^{3/2}}{3} + C$ E. $\frac{2(2x+1)^{3/2}}{3} + C$

C. $\frac{(2x+1)^{3/2}}{6} + C$

4. If $f(x) = \int_0^x \sqrt{t^2 + 1} dt$, then f'(x) =

A. $\frac{\sqrt{x^2+1}}{2}$ **B.** $x\frac{\sqrt{x^2+1}}{2}$ **C.** $\sqrt{x^2+1}$ **D.** $x\sqrt{x^2+1}$ **E.** $\sqrt{x^2+1}-1$

5. Use Newton's Method to approximate the root of $x^3 - 6x + 4 = 0$. Let $x_1 = 1$. Find x_2 .

A. -2

 $\mathbf{B.}\ 0$

C. $\frac{2}{3}$ D. $\frac{4}{3}$

E. 4

6. Find the average value of the function $f(x) = \sin(2x)$ on the interval $\left[0, \frac{\pi}{4}\right]$.

A. $-\frac{2}{\pi}$ B. $-\frac{1}{2}$

C. 0 D. $\frac{1}{2}$ E. $\frac{2}{\pi}$

Regular problems: show all your work

7. A box with a square base and open top must have a volume of 4,000 cm³. Find the dimensions of the box that minimize the amount of material used.

8. If $f'(x) = 10x^4 + 8x^3 + 6x^2 + 4$ and f(-1) = 2, find f(x).

9. Find the area of the region under the graph of $f(x) = \frac{1}{x^2}$ from x = 1 to x = 2.

10. Find the volume of the solid obtained by rotating about the x-axis the region enclosed by $y = 1 - x^2$ and the x-axis.

11. Find the area of the region enclosed by $x = 2y - y^2$ and $x = y^2 - 2y$.

12. Find the volume of the solid obtained by rotating about x=1 the region under the graph of $f(x)=\sqrt{x}$ from x=1 to x=4.