Practice test 1

The actual exam will consist of 6 multiple choice questions and 6 regular problems. You will have 1 hour to complete the exam.

Multiple choice questions: circle the correct answer

1. The function $f(x) = \sin(x) + x^2$ is

A. even

B. odd C. periodic with period 2π

D. discontinuous at 0

E. None of the above

2. If we shift the graph of $y = \sin(x)$ 2 units to the left, then the equation of the new graph is

A. $y = \sin(x) + 2$ **B.** $y = \sin(x) - 2$ **C.** $y = \sin(x+2)$ **D.** $y = \sin(x-2)$

E. $y = \sin(x/2)$

3. The domain of the function $f(x) = \sqrt{\frac{1}{9-x^2}} + \sqrt{x-1}$ is the set of all real numbers xfor which

A. x < -3 or x > 3 **B.** x < 3 **C.** $x \ge 1$ **D.** $1 \le x < 3$ **E.** 1 < x < 3

4. $\lim_{\substack{x \to -1^{-} \\ \mathbf{A.} \ 1}} \frac{|x+1|}{x+1} = \mathbf{B.} -1$ C. 0

D. $-\infty$ **E.** Does not exist

5. The function $f(x) = \begin{cases} -x - 1 & \text{if } x < -1 \\ 0 & \text{if } -1 \le x \le 1 \\ x & \text{if } x > 1 \end{cases}$ is

A. continuous everywhere

B. continuous at 1 but discontinuous at -1

C. continuous at -1 but discontinuous at 1

D. continuous at all points except for 1 and -1

E. discontinuous everywhere

6. Find the equation of the line tangent to the curve $y = x^2 + 4x + 4$ at (1, 9).

A. y = 9x

B. y = 6x - 15

C. y = 6x + 3 D. y = 2x + 1

E. None of the above

7. If f(3) = 2, f'(3) = 4, g(3) = 5, and g'(3) = 6, then the derivative of $\frac{f(x)}{g(x)}$ at x = 3 is

B. 2/3 **C.** -8/25

D. 0

E. Undefined

Regular problems: show all your work

8. Sketch the graphs of:

(a)
$$(x-3)^2$$

(b)
$$3\cos x + 2$$

(c)
$$-\sin\left(x-\frac{\pi}{2}\right)$$

(d)
$$e^{-x-1}$$

- 9. Find a formula for the function whose graph is obtained from the graph of $f(x) = e^x 1$ by
 - (a) Reflecting about the y-axis.
 - (b) Vertically compressing by a factor of 5 and then shifting 3 units to the left.
 - (c) Reflecting about the x-axis and then shifting 2 units down.
- 10. Let f(x) = 2 x, $g(x) = \frac{1}{x}$, $h(x) = \sqrt{x+1}$. Find the following functions and state their domains:

(a)
$$g \circ f$$

(b)
$$f \circ h$$

(c)
$$g \circ h$$

11. Evaluate the limits:

(a)
$$\lim_{x \to 5} (7x - 25)$$

(b)
$$\lim_{x \to -1} \frac{x^3 + x^2}{x^2 + 3x + 2}$$

(c)
$$\lim_{x \to 0} \frac{3 - \sqrt{9 + x}}{x}$$

(d)
$$\lim_{x \to 2^+} \frac{x^3 - 2}{x^2 - x - 2}$$

(e)
$$\lim_{x \to 2^{-}} \frac{x^3 - 2}{x^2 - x - 2}$$

(f)
$$\lim_{x \to 2} \frac{x^3 - 2}{x^2 - x - 2}$$

(g)
$$\lim_{x \to 0} x^4 \cos\left(\frac{1}{x}\right)$$

12. Find c such that the function $f(x) = \begin{cases} cx & \text{if } x \ge 2\\ 5-x & \text{if } x < 2 \end{cases}$ s continuous everywhere.

2

- 13. Show that the equation $x^5 4x + 2 = 0$ has at least one solution in the interval (1, 2).
- 14. Find the vertical asymptotes of $f(x) = \frac{(x+2)(3x-4)}{(x-5)(x+7)}$.
- 15. Differentiate the following functions:

(a)
$$f(x) = 7x - 3$$

(b)
$$p(s) = s^5 - 2s^4 + 3s^3 - 4s^2 + 5s - 6$$

(c)
$$f(t) = \frac{3t^2 - 5t + 1}{\sqrt{t}}$$

(d)
$$g(x) = x^2 - \frac{x^3}{\sqrt[4]{x}} + \frac{3}{x}$$

(e)
$$q(y) = \frac{y^2 + y + 1}{y + 1}$$