MATH 75 Test 2 - Solutions

Multiple choice questions: circle the correct answer

1. Find the derivative of the function $f(x) = \sin^3(x)$.

 $\mathbf{A.} \cos^3(x)$

B. $3\sin^2(x)$ **C.** $3\cos^2(x)$

(D.) $3\sin^2(x)\cos(x)$ E. $-3\sin^2(x)\cos(x)$

2. Find the vertical and horizontal asymptotes for the function $f(x) = \frac{x^3 + 2x + 1}{x^3 - x}$

B. x = 0, x = 1, y = 1

E. x = -1, x = 0, x = 1, y = 0

3. Evaluate the limit: $\lim_{x\to\infty} \frac{5x+4}{x^2+2x-1}$.

 $A. -\infty$

(**B**.) 0

C. 1

D. 5

 $\mathbf{E}. \infty$

4. If $f(x) = \sqrt{x}$, find f''(4).

A. $-\frac{1}{2}$ **B.** $-\frac{1}{32}$

 $\mathbf{C.}\ 0$

D. $\frac{1}{8}$

E. 2

5. The graph of $y = x^4 + 2x^2 + 5$ has how many inflection points?

(A.)0

D. 3

E. 4

6. Find the critical numbers of $y = 4x^3 - x^4$.

 $\mathbf{A.}\ 0$

 $(\mathbf{C}.)0$ and 3

D. 0 and 4

E. no critical numbers

Regular problems: show all your work

7. Evaluate the limit: $\lim_{x \to -\infty} \frac{5x^2 + 4}{\sqrt{3x^2 + 2}}$

$$\lim_{x \to -\infty} \frac{5x^2 + 4}{\sqrt{3x^2 + 2}} = \lim_{x \to -\infty} \frac{\frac{5x^2 + 4}{x}}{\frac{\sqrt{3x^2 + 2}}{x}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{\frac{\sqrt{3x^2 + 2}}{-\sqrt{x^2}}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{-\sqrt{\frac{3x^2 + 2}{x^2}}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{-\sqrt{3} + \frac{2}{x^2}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{-\sqrt{3} + \frac{2}{x^2}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{-\sqrt{3} + \frac{2}{x^2}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{-\sqrt{3} + \frac{2}{x^2}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{-\sqrt{3} + \frac{2}{x^2}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{-\sqrt{3} + \frac{2}{x^2}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{-\sqrt{3} + \frac{2}{x^2}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{-\sqrt{3} + \frac{2}{x^2}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{-\sqrt{3} + \frac{2}{x^2}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{-\sqrt{3} + \frac{2}{x^2}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{-\sqrt{3} + \frac{2}{x^2}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{-\sqrt{3} + \frac{2}{x^2}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{-\sqrt{3} + \frac{2}{x^2}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{-\sqrt{3} + \frac{2}{x^2}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{-\sqrt{3} + \frac{2}{x^2}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{-\sqrt{3} + \frac{2}{x^2}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{-\sqrt{3} + \frac{2}{x^2}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{-\sqrt{3} + \frac{2}{x^2}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{-\sqrt{3} + \frac{2}{x^2}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{-\sqrt{3} + \frac{2}{x^2}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{-\sqrt{3} + \frac{2}{x^2}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{-\sqrt{3} + \frac{2}{x^2}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{-\sqrt{3} + \frac{2}{x^2}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{-\sqrt{3} + \frac{2}{x^2}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{-\sqrt{3} + \frac{2}{x^2}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{-\sqrt{3} + \frac{2}{x^2}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{-\sqrt{3} + \frac{2}{x^2}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{-\sqrt{3} + \frac{2}{x^2}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{-\sqrt{3} + \frac{2}{x^2}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{-\sqrt{3} + \frac{2}{x^2}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{-\sqrt{3} + \frac{2}{x^2}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{-\sqrt{3} + \frac{2}{x^2}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{-\sqrt{3} + \frac{2}{x^2}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{-\sqrt{3} + \frac{2}{x^2}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{-\sqrt{3} + \frac{2}{x^2}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{-\sqrt{3} + \frac{2}{x^2}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{-\sqrt{3} + \frac{2}{x^2}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{-\sqrt{3} + \frac{2}{x^2}} = \lim_{x \to -\infty} \frac{5x + \frac{4}{x}}{$$

8. Find the linear approximation of the function $f(x) = \cos(x)$ at $a = \frac{\pi}{2}$

$$L(x) = f(a) + f'(a)(x - a)$$

$$f(a) = \cos\left(\frac{\pi}{2}\right) = 0; \quad f'(x) = -\sin(x), \text{ so } f'(a) = -\sin\left(\frac{\pi}{2}\right) = -1$$

Therefore $L(x) = 0 - \left(x - \frac{\pi}{2}\right) = \frac{\pi}{2} - x$.

9. Find the intervals of concavity of the function $f(x) = 4x^3 - 3x^2 - 1$.

 $f'(x) = 12x^2 - 6x$

f''(x) = 24x - 6.

f''(x) > 0 if 24x - 6 > 0, or 24x > 6, or $x > \frac{1}{4}$.

f''(x) < 0 if 24x - 6 < 0, or 24x < 6, or $x < \frac{1}{4}$.

Therefore f(x) is concave upward on $\left(\frac{1}{4},\infty\right)$ and concave downward on $\left(-\infty,\frac{1}{4}\right)$.

1

10. Find local maxima and minima of $f(x) = (x^2 - 1)^2$.

$$f(x) = x^4 - 2x^2 + 1$$

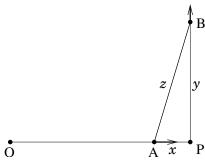
$$f'(x) = 4x^3 - 4x = 4x(x^2 - 1) = 4x(x - 1)(x + 1).$$

f'(x) is negative on $(-\infty, -1)$, positive on (-1, 0), negative on (0, 1), and positive again on $(1, \infty)$.

So f'(x) changes from positive to negative at 0, and changes from negative to positive at -1 and at 1. Therefore f(x) has a local maximum at 0, and local minuma at -1 and at 1.

11. At noon, ship A is 150 km west of ship B. Ship A is sailing east at 35 km/h and ship B is sailing north at 25 km/h. How fast is the distance between the ships changing at 4:00 PM?

Let x (or x(t), since it is a function of t) be the distance between ship A and point P (see picture), then x'(t) = -35 since x(t) is decreasing. Let y (or y(t)) be the distance between ship B and point P, then y'(t) = 25. Finally, let z (or z(t)) be the distance between the ships, then we want to find z'(t).



$$x^2 + y^2 = z^2$$

$$(x(t))^2 + (y(t))^2 = (z(t))^2$$

Differentiate both sides with respect to t:

$$2x(t)x'(t) + 2y(t)y'(t) = 2z(t)z'(t)$$

$$xx' + yy' = zz'$$

At
$$4:00$$
 PM, $x = 150 - 4 \cdot 35 = 10$, $y = 4 \cdot 25 = 100$, $z = \sqrt{10^2 + 100^2} = \sqrt{10100} = 10\sqrt{101}$.

$$10(-35) + 100 \cdot 25 = 10\sqrt{101}z'$$

$$z' = \frac{2150}{10\sqrt{101}} = \frac{215}{\sqrt{101}}$$

12. Find an equation of the tangent line to the curve $xy + 3x^2y^2 - 5x = 7$ at the point (-1,1).

Regard y as a function of x:

$$xy(x) + 3x^2(y(x))^2 - 5x = 7$$

Differentiate both sides with respect to x:

$$y(x) + xy'(x) + 6x(y(x))^{2} + 6x^{2}y(x)y'(x) - 5 = 0$$

Rewrite to make it look simplier:

$$y + xy' + 6xy^2 + 6x^2yy' - 5 = 0$$

Plug in -1 for x and 1 for y:

$$1 - y' - 6 + 6y' - 5 = 0$$

Solve for u':

$$5y' - 10 = 0 \implies 5y' = 10 \implies y' = 2$$

An equation is then y - 1 = 2(x + 1), or y = 2x + 3.