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Set operations and logical connectives

P ∪ Q = P ∩ Q ¬(P ∨ Q) ≡ (¬P) ∧ (¬Q)

P = P ¬¬P ≡ P

P ∩ (Q ∪ R) = (P ∩ Q) ∪ (P ∩ R) P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R)
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Axioms

1. (P ∧ Q) → P

2. (Q ∧ P) → P

3. P → (P ∨ Q)

4. P → (Q ∨ P)

5. ¬¬P → P

6. P → (Q → P)

7. P → (Q → (P ∧ Q))

8.
(
(P → Q) ∧ (P → ¬Q)

)
→ ¬P

9.
(
(P → R) ∧ (Q → R)

)
→

(
(P ∨ Q) → R

)
10.

(
(P → Q) ∧

(
P → (Q → R)

))
→ (P → R)

Rule of inference

P, P → Q
Q
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Example: derive (A ∨ B) → (B ∨ A)

1. Axiom P → (P ∨ Q): B → (B ∨ A)

2. Axiom P → (Q ∨ P): A → (B ∨ A)

3. Axiom P →
(
Q → (P ∧ Q)

)
:

(A → B ∨ A) →

(
(B → B ∨ A) →

(
(A → B ∨ A)∧ (B → B ∨ A)

))
4. Steps 2 and 3: (B → B ∨ A) →

(
(A → B ∨ A) ∧ (B → B ∨ A)

)
5. Steps 1 and 4: (A → B ∨ A) ∧ (B → B ∨ A)

6. Axiom
(
(P → R) ∧ (Q → R)

)
→

(
(P ∨ Q) → R

)
:(

(A → B ∨ A) ∧ (B → B ∨ A)
)

→

(
(A ∨ B) → (B ∨ A)

)
7. Steps 5 and 6: (A ∨ B) → (B ∨ A)
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Subset interpretation

Let X be a set.

Logical connectives are interpreted as operations on subsets of X :

I conjunction ∧ � as intersection ∩

I disjunction ∨ � as union ∪

I negation ¬ � as complement

(P → Q) ≡ ((¬P) ∨ Q) , (P ↔ Q) ≡ ((P → Q) ∧ (Q → P))

Given a mapping from propositional variables (P, Q, etc.) to subsets

of X , every formula is mapped to a subset X .
e.g. P ∧ Q 7→ P ∩ Q

P ∨ ¬P 7→ P ∪ P

= X

Some formulas are always mapped to the whole set X . They are called

valid with respect to interpretation in X .
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Soundness and completeness

Theorem. Let X be a set.

1. All tautologies (= derivable formulas) of the classical logic are

valid with respect to interpretation in X .

The classical logic is

sound with respect to this interpretation.

2. If X is non-empty, the tautologies (= derivable formulas) of the

classical logic are the only formulas valid with respect to

interpretation in X . The classical logic is complete with respect

to this interpretation.

The language of classical logic does not distinguish di�erent

non-empty sets X .
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Topological spaces

De�nition. A topological space is a set X together with a collection of

subsets of X , called open subsets, satisfying the following axioms:

I The empty subset and X are open.

I The union of any collection of open subsets is also open.

I The intersection of any pair of open subsets is also open.

Example. X = Rn. A subset P of X is open i� for any point x in P,
some open ball containing x is contained in P.

R R2
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Topological spaces

De�nition. The complement of an open subset is called closed.

De�nition. Given a subset P of X , the interior of P is the largest

open subset of P.

Example. X = R, P = [a, b], interior(P) = (a, b).

De�nition. Let X and Y be topological spaces. Then f : X → Y is

continuous if for any open subset U of Y , f −1(U ) is an open subset of

X .
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Quanti�ers

I �∀x� means �for all x�
I �∃x� means �there exists x�

Example. Let P be a subset of R2. Then

∀x ∈ P ∃r ∈ R
(
(r > 0) ∧ ∀y ∈ R2(dist(x, y) < r → y ∈ P

))
means that P is open.

The language with quanti�ers is very expressive but undecidable.
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Compromise: modality

The classical logic is extended with an operator 2.

Interpretations of 2:

I is known

I is provable

I is computable

I is necessary

I will be true tomorrow

I etc.
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S4: ∧, ∨, ¬, →, ↔, 2

I Axioms of classical logic

I 2P → P
I 2P → 22P
I 2(P → Q) → (2P → 2Q)

Rules of inference

P, P → Q
Q

and
P

2P

Topological interpretation of 2:

2P = interior(P)

Theorem. Let X be a topological space. Then S4 is sound with

respect to interpretation in X .



The Logic of Topology Maria Nogin

CSUF Mathematics SeminarMarch 22, 2007 12/26

S4: ∧, ∨, ¬, →, ↔, 2

I Axioms of classical logic

I 2P → P
I 2P → 22P
I 2(P → Q) → (2P → 2Q)

Rules of inference

P, P → Q
Q

and
P

2P

Topological interpretation of 2:

2P = interior(P)

Theorem. Let X be a topological space. Then S4 is sound with

respect to interpretation in X .



The Logic of Topology Maria Nogin

CSUF Mathematics SeminarMarch 22, 2007 12/26

S4: ∧, ∨, ¬, →, ↔, 2

I Axioms of classical logic

I 2P → P
I 2P → 22P
I 2(P → Q) → (2P → 2Q)

Rules of inference

P, P → Q
Q

and
P

2P

Topological interpretation of 2:

2P = interior(P)

Theorem. Let X be a topological space. Then S4 is sound with

respect to interpretation in X .



The Logic of Topology Maria Nogin

CSUF Mathematics SeminarMarch 22, 2007 12/26

S4: ∧, ∨, ¬, →, ↔, 2

I Axioms of classical logic

I 2P → P
I 2P → 22P
I 2(P → Q) → (2P → 2Q)

Rules of inference

P, P → Q
Q

and
P

2P

Topological interpretation of 2:

2P = interior(P)

Theorem. Let X be a topological space. Then S4 is sound with

respect to interpretation in X .



The Logic of Topology Maria Nogin

CSUF Mathematics SeminarMarch 22, 2007 13/26

Theorem. S4 is complete with respect to all interpretations in all

topological spaces X , i.e. for any formula F , the following statements

are equivalent:

1. F is derivable in S4

2. F is valid in each interpretation (for each topological space X)

3. F is valid in each interpretation for each Rn

4. F is valid in each interpretation for some Rn

Corollary. The modal logic (with operations ∧, ∨, ¬, →, 2) does not

distinguish Rn's for di�erent n.
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Problem

Start with a subset S of R.

Consider the following sequences:

S compl(S)
inter(S) inter(compl(S))
compl(inter(S)) compl(inter(compl(S)))
inter(compl(inter(S))) inter(compl(inter(compl(S))))
...

...

Can there be in�nitely many di�erent sets in these sequences?

If not, what is the maximum number of di�erent sets?
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Example 1

↓ interior

↓ complement

↓ interior

Get 4 di�erent subsets of R
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Example 2

complement
−−−−−−−−→

↓ interior

↓ complement

↓ interior

↓ complement

Get 6 di�erent subsets of R
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Example 3

complement
−−−−−−−−→

↓ interior ↓ interior

↓ complement ↓ complement

↓ interior

↓ complement

Get 8 di�erent subsets of R
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Can there be in�nitely many di�erent sets?

Answer: No.

What is the largest possible number of di�erent sets?

Answer: 14.

Proof that we cannot get more than 14.

Lemma. There are at most 7 di�erent sets in the sequence
S
inter(S)
compl(inter(S))
inter(compl(inter(S)))
...

because

inter(compl(inter(compl(inter(compl(inter(S))))))) =

inter(compl(inter(S)).
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Lemma. 2¬2¬2¬2S = 2¬2S

Proof. Let T = ¬S, then S = ¬T . We want to prove:

2¬2¬2¬2¬T = 2¬2¬T .

Notation: 3R ≡ ¬2¬R.
In the topological interpretation �3R� means �the closure of R�.

Want to prove: 2323T ≡ 23T .
Proof of 23T → 2323T . Axiom: 2P → P
Let P = ¬R, then 2¬R → ¬R
Contrapositive: R → ¬2¬R
Let R = 2Q, then 2Q → ¬2¬2Q
i.e. 2Q → 32Q
Apply 2: 22Q → 232Q
Axiom: 2Q → 22Q
Therefore 2Q → 232Q
Let Q = 3T , then 23T → 2323T .

Similarly 2323T → 23T .
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Similarly, there are at most 7 di�erent subsets in the sequence
compl(S)
inter(compl(S))
compl(inter(compl(S)))
inter(compl(inter(compl(S))))
...

because

inter(compl(inter(compl(inter(compl(inter(compl(S)))))))) =

inter(compl(inter(compl(S))),

so at most 14 di�erent subsets total.

Homework problem. Find a subset of R for which you get 14 di�erent

subsets.
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Dynamic topological systems

De�nition. A dynamic topological system is a topological space X
with a continuous function f : X → X .

New modal operator [a]: [a] P is interpreted as f −1(P).

S4C

I Axioms of classical logic

I 2P → P
I 2P → 22P
I 2(P → Q) → (2P → 2Q)

I [a] (P → Q) → ([a] P → [a] Q)

I ([a] ¬P) ↔ (¬ [a] P)

I ([a] 2P) ↔ (2 [a] 2P)

Rules of inference

(1)
P, P → Q

Q

(2)
P

2P
(3)

P
[a] P
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Theorem. Let F be a formula. The following are equivalent:

1. F is derivable in S4C

2. F is valid with respect to every interpretation in every Rn

However, the above statements are not equivalent to

3. F is valid with respect to every interpretation in R

Corollary. The language of S4C distinguishes R from Rn for n > 1.
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Example

Let U = 2P (U is open),

8 = (3U ) ∧ (3¬U ) (8 is the boundary of U),

9 = (2 [a] 8) ∧ ([a] Q) ∧ (3 [a] ¬Q).

Lemma. If P and Q are subsets of R, then 9 = ∅.

Corollary. ¬9 = R

Lemma. There exist subsets P and Q of R2 and a continuous

function f : R2
→ R2 such that 9 6= ∅, i.e. ¬9 6= R2.

Corollary. The formula ¬9 is not derivable in S4C.
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Theorem

(joint work with Aleksey Nogin)

For any n ≥ 2, S4C is complete with respect to topological

interpretations in Rn.

Open question

What is the dynamic topological logic of R?
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Application: Hybrid Control Systems

I �Discrete� parameters: Discrete Mathematics

I �Continuous� parameters: Optimal Control Theory:

Di�erential Equations, PDEs, etc

I Parameters of both types: Hybrid Control System:

Modal Logic
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Thank you!
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