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. (PAQ)—> P

. (OAP)> P

. P> (PVQ

. P> (QVP)

—-—P - P

. P> (Q—> P)

P> (Q—=>(PAQ)

. ((P% Q)/\(P—)—'Q))—)—'P

. ((P—)R)/\(Q—>R))—> ((PvQ)—>R)
. ((P—> Q)/\(P—)(Q—>R)))—>(P—>R)



Axioms

o

o

1
2
3
4
d.
6
7
8.

CALIFORNIA STATE UNIVERSITY
CHANNEL ISLANDS

. (PAQ)—> P

. (OAP)> P

. P> (PVOQ) Rule of inference

. P> (QVP) P, P> Q
-—P = P 0

. P> (Q—> P)

. P> (QO— (PAQ))

((P—> Q)A(P—>—|Q))—>—|P
((P—)R)/\(Q—>R))—>((PVQ)—>R)
((P—> Q)/\(P—)(Q—>R)))—>(P—>R)
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Example: derive (AV B) = (B V A)

1. Axiom P = (PV Q): B — (BV A)

2. Axiom P — (QV P): A— (BV A)

3. Axiom P — (Q = (P A Q)):
(A—>BvA)—>((B—>BvA)—>((A—>BvA)A(B—>BvA)))

4. Steps 2and 3: (B— BV A)— ((A—> BV A)A(B— BV A))

5. Steps 1 and 4: (A— BV A)A(B—> BV A)

6. Axiom ((P S RAWQ > R)) N ((P v 0) - R):
((A—)BVA)A(B%BVA))—)((AVB)—>(BVA))

7. Steps b and 6: (AV B)—> (BV A)
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Logical connectives are interpreted as operations on subsets of X:
» conjunction A — as intersection N
» disjunction V — as union U

» negation — — as complement



C§‘B(,H —\NN}:L I\L ~\ND\

Subset interpretation

Let X be a set.
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» conjunction A — as intersection N
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Subset interpretation

Let X be a set.

Logical connectives are interpreted as operations on subsets of X:
» conjunction A — as intersection N
» disjunction V — as union U

» negation — — as complement

P> 0)=((=P)VvO), Peo0)=(P->A(Q—P)
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Subset interpretation

Let X be a set.
Logical connectives are interpreted as operations on subsets of X:

» conjunction A — as intersection N

» disjunction V — as union U

» negation = — as complement
(P> )=(=P)VO), (PoQ)=((P-> O0A(Q—>P)
Given a mapping from propositional variables (P, Q, etc.) to subsets
of X, every formula is mapped to a subset X.

e.g. PAQO = PO
Pv-—-P = PUP
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Subset interpretation

Let X be a set.
Logical connectives are interpreted as operations on subsets of X:

» conjunction A — as intersection N

» disjunction V — as union U

» negation = — as complement
(P> )=(=P)VO), (PoQ)=((P-> O0A(Q—>P)
Given a mapping from propositional variables (P, Q, etc.) to subsets
of X, every formula is mapped to a subset X.

e.g. PAQO = PO
Pv-—-P = PUP=X




Subset interpretation

Let X be a set.
Logical connectives are interpreted as operations on subsets of X:

» conjunction A — as intersection N
» disjunction V — as union U

» negation — — as complement

(P> )=((=P)VQY), (PoQ=(P-> O)A(Q—>P)
Given a mapping from propositional variables (P, Q, etc.) to subsets
of X, every formula is mapped to a subset X.
e.g. PAQ = PNQO

Pv-P = PUP=X
Some formulas are always mapped to the whole set X. They are called
valid with respect to interpretation in X.
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classical logic are the only formulas valid with respect to
interpretation in X.
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Soundness and completeness

Theorem. Let X be a set.

1. All tautologies (= derivable formulas) of the classical logic are
valid with respect to interpretation in X. The classical logic is
sound with respect to this interpretation.

2. If X is non-empty, the tautologies (= derivable formulas) of the
classical logic are the only formulas valid with respect to
interpretation in X. The classical logic is complete with respect
to this interpretation.

The language of classical logic does not distinguish different
non-empty sets X.



Topological spaces

Definition. A topological space is a set X together with a collection of
subsets of X, called open subsets, satisfying the following axioms:

» The empty subset and X are open.
» The union of any collection of open subsets is also open.

» The intersection of any pair of open subsets is also open.



Topological spaces

Definition. A topological space is a set X together with a collection of
subsets of X, called open subsets, satisfying the following axioms:

» The empty subset and X are open.
» The union of any collection of open subsets is also open.
» The intersection of any pair of open subsets is also open.

Example. X = R". A subset P of X is open iff for any point x in P,
some open ball containing x is contained in P.
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Topological spaces

Definition. The complement of an open subset is called closed.
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Topological spaces
Definition. The complement of an open subset is called closed.

Definition. Given a subset P of X, the interior of P is the largest
open subset of P.

Example. X =R, P =[a,b], interior(P) = (a, b).
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Topological spaces
Definition. The complement of an open subset is called closed.

Definition. Given a subset P of X, the interior of P is the largest
open subset of P.

Example. X =R, P =[a,b], interior(P) = (a, b).

Definition. Let X and Y be topological spaces. Then f: X — Y is
continuous if for any open subset U of Y, f~!(U) is an open subset of
X.
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Quantifiers

» “Vx” means “for all x”

» “dx” means “there exists x”

Example. Let P be a subset of R2. Then

Vxe PIreR ((r>0)/\‘v’yeR2(dist(x,y) <r—ye P))

means that P is open.
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Quantifiers

» “Vx” means “for all x”

» “dx” means “there exists x”

Example. Let P be a subset of R2. Then

Vxe PIreR ((r>0)/\‘v’yeR2(dist(x,y) <r—ye P))

means that P is open.

The language with quantifiers is very expressive but undecidable.
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Compromise: modality

The classical logic is extended with an operator O.
Interpretations of O:

» is known

» is provable

» is computable

» is necessary

» will be true tomorrow

etc.
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Axioms of classical logic
OoP—> P

op — ogp

o/ - Q)— (OP - OQ)
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OP — P Rules of inference
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Axioms of classical logic

» OP > P Rules of inference

» OP —» OOP P, P> 0O L P
———— and —

> O(P > Q) > (OP - 0Q) 0 Op

Topological interpretation of O:
OP = interior(P)
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S4: A, VvV, 0, >, &, O

» Axioms of classical logic

» OP > P Rules of inference

» OP —» OOP P, P> 0O L P
———— and —

> O(P > Q) > (OP - 0Q) 0 Op

Topological interpretation of O:
OP = interior(P)

Theorem. Let X be a topological space. Then 54 is sound with
respect to interpretation in X.
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3. F is valid in each interpretation for each R”



Theorem. 5S4 is complete with respect to all interpretations in all
topological spaces X, i.e. for any formula F, the following statements
are equivalent:

1. F is derivable in S4

2. F is valid in each interpretation (for each topological space X)
3. F is valid in each interpretation for each R”
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Theorem. 5S4 is complete with respect to all interpretations in all
topological spaces X, i.e. for any formula F, the following statements
are equivalent:

1. F is derivable in S4

2. F is valid in each interpretation (for each topological space X)
3. F is valid in each interpretation for each R”
4

. F is valid in each interpretation for some R”"

Corollary. The modal logic (with operations A, Vv, =, —, O) does not
distinguish R"’s for different n.
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Start with a subset S of R. Consider the following sequences:
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Can there be infinitely many different sets in these sequences?
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Problem

Start with a subset S of R. Consider the following sequences:

S| compl(S)
inter(S) inter(compl(S))
compl(inter(S)) compl(inter(compl(S)))

inter(compl(inter(S))) inter(compl(inter(compl(S))))

Can there be infinitely many different sets in these sequences?

If not, what is the maximum number of different sets?
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Example 1

——
J interior
—O——0—
J complement
—e —
J interior
e —

Get 4 different subsets of R
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e Q)

! interior
e
J complement
— e

J interior
—_ o
J complement
o
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——e——o — complement —o —— e&—
_

! interior
e
J complement
— e

J interior
—_ o
J complement
o
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Example 2

——e——o — complement —o —— e&—
—_—

! interior
e
J complement
— e

J interior
—_ o
J complement
o

Get 6 different subsets of R
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Example 3

——0 o —

J interior
—O—o0——
! complement
—e ——
! interior
00—
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l interior
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-
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! complement
-
! interior
_— O
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—o—o
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Example 3

—e—o0 e — complement —o —— e—o—
—_—

l interior Jl interior
—O—0—— —0 — 0—O0—
! complement ! complement
—e  ———— - ———o o
! interior
e ——

J complement
——e
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Example 3

—e—o0 e — complement —o —— e—o—
—_—

l interior Jl interior
—O—0—— 0 O0—O0—
! complement ! complement
—e  ———— S e——e o

! interior
_— O
J complement
o

Get 8 different subsets of R
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Can there be infinitely many different sets?
Answer: No.

What is the largest possible number of different sets?
Answer: 14.

Proof that we cannot get more than 14.

Lemma. There are at most 7 different sets in the sequence
S
inter(S)
compl(inter(S))
inter(compl(inter(S)))

because

inter(compl(inter(compl(inter(compl(inter(S))))))) =
inter(compl(inter(S)).
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Notation: GR = —~0O-R.

In the topological interpretation “OR” means “the closure of R”.
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Lemma. O-0-0-08 = 0O-08
Proof. Let T = =S, then S = =T. We want to prove:
O0-0-0-0-T = 0-0-T.

Notation: GR = —~0O-R.
In the topological interpretation “OR” means “the closure of R”.

Want to prove: OOCOCT = OOT.
Proof of OCT —» OCOCT. Axiom: OP — P
Let P = =R, then O-R — —R
Contrapositive: R — —O—=R

Let R = 0Q, then 0Q — —0-0Q
i,e. 00— <OQ

Apply O: 00Q — 0000

Axiom: O0OQ — 0OOQ

Therefore OQ — OO0

Let Q = OT, then OOT — O0COCT.
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Lemma. O-0-0-08 = 0O-08
Proof. Let T = =S, then S = =T. We want to prove:
O0-0-0-0-T = 0-0-T.

Notation: GR = —~0O-R.
In the topological interpretation “OR” means “the closure of R”.

Want to prove: OOCOCT = OOT.

Proof of OCT — OCOCT.  Axiom: OP — P
Let P = =R, then O-R — —R
Contrapositive: R — —O—=R

Let R = 0Q, then 0Q — —0-0Q

i,e. 00— <OQ

Apply O: 00Q — 0000

Axiom: O0OQ — 0OOQ

Therefore OQ — OO0

Let Q = OT, then OOT — O0COCT.
Similarly OCOOT — OCT.
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Similarly, there are at most 7 different subsets in the sequence
compl(S)
inter(compl(S))
compl(inter(compl(S)))
inter(compl(inter(compl(S))))

because

inter(compl(inter(compl(inter(compl(inter(compl(S)))))))) =
inter(compl(inter(compl(S))),

so at most 14 different subsets total.
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Similarly, there are at most 7 different subsets in the sequence
compl(S)
inter(compl(S))
compl(inter(compl(S)))
inter(compl(inter(compl(S))))

because

inter(compl(inter(compl(inter(compl(inter(compl(S)))))))) =
inter(compl(inter(compl(S))),

so at most 14 different subsets total.

Homework problem. Find a subset of R for which you get 14 different
subsets.
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with a continuous function f: X — X.
New modal operator [a]: [a] P is interpreted as f‘l(P).
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Dynamic topological systems

Definition. A dynamic topological system is a topological space X
with a continuous function f: X — X.
New modal operator [a]: [a] P is interpreted as f‘l(P).

54C

» Axioms of classical logic

» OP > P Rules of inference

» OP — OOP P, P> 0

» O(P - Q) - (OP — 0Q) (1) — 0

» [a] (P > Q) — ([a]l P — [a] Q)

> ([a] =P) < (—[al P) (2) L (3) .
aopP [a] P

([a] OP) <> (O [a] OP)
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2. F is valid with respect to every interpretation in every R”
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Theorem. Let F be a formula. The following are equivalent:
1. F is derivable in S4C

2. F is valid with respect to every interpretation in every R”

However, the above statements are not equivalent to

3. F is valid with respect to every interpretation in R

Corollary. The language of S4C distinguishes R from R” for n > 1.
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Let U =0P (U is open),
D = (QU) A (O=U) (@ is the boundary of U),
¥ = (O[a]®) A ([a] Q) A (C[a] = Q).

Lemma. There exist subsets P and Q of R? and a continuous
function f: R*> = R? such that ¥ # @, i.e. =¥ # R%.

fx,y) = (x,0) T
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Example

Let U =0P (U is open),
D = (QU) A (O=U) (@ is the boundary of U),
¥ = (O[a]®) A ([a] Q) A (C[a] = Q).

Lemma. There exist subsets P and Q of R? and a continuous
function f: R*> = R? such that ¥ # @, i.e. =¥ # R%.

T i
_ )
f(x,y)—(x,O) Q[

Corollary. The formula =¥ is not derivable in S4C.
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Thank you!

Special thanks to Professor Jorge Garcia
for his workshop on I4TEX presentations
and for creating a CSUCI theme for Beamer
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