]O urhal Of October ® 1989

Systems
Management

Published by the Association for Systems Management

Information
Systems And
Data Security

® Computer Security: New
Managerial Concern For The
1980s And Beyond

® Computer Fraud in Commercial

Banks: Management’s Perception
Of Risk

® Conceptual Feedback Effects In
Information Systems Design

® The Day-One Systems
Changeover Tatic

® Is Data Processing A Shepherd
Or A Servant?

® Don’t Trust The Numbers?




® The rather old-fashioned phrase ‘‘data proc-
essing’’ provides an appropriate starting point for
understanding the elements of information sys-
tems design. The essence of any information sys-
tem is that it is given data (‘‘datum” literally
means given) which it then transforms to a state
(*‘information’’) suitable for performing an op-
eration or making a decision.

Data (such as *‘customer balance’’ or *‘product
code’’) are essentially static while processes
(such as ‘‘calculate net pay’’) are primarily dy-
namic. That is why data are commonly described
in terms of nouns, while processes are associated
with verbs. But data also have dynamic qualities.
This becomes clear when we talk of ‘‘data flows”’
within a system. Data flows from one person to
another, from a person to a computer system, and
evén within a computer system from the terminal
to the central processing unit. Hence, data may
be conceptualized not only statically but also dy-
namically (such as ‘‘transmit customer num-
ber’’).

On the other hand, processes may be concep-
tualized not only dynamically but also statically.
A river is a process, but one can talk about its
static and structural aspects such as shape and
length. Likewise, an assembly line is a dynamic
conversion process, but it also possesses an over-
all structure. Processes involving data can also

be viewed structurally. A long and complex com-
puter program (which is the coded embodiment

of a process) can be divided into various sections
and subsections that can then be related logically
in an overall structure.

Having argued that data and processes each
have both static and dynamic qualities, we are
led to a four-fold categorization. The following
four elements are characteristic of any informa-

The five phases of information systems design cannot
be followed in a strictly linear, sequential means.

tion system:

1. The dynamic aspects of data. This covers
forms and computer screens (both used
in the flow of data from the user to the
system and vice versa).

2. The static aspects of data. This covers
the various files or the entire database,
as the case may be.

3. The static aspects of processes. This cov-
ers the structure charts that show the con-
stituent modules of the process at dif-
ferent levels. \

4. The dynamic aspects of processes. This
refers to the algorithmic details inside of
each module. The most common tools
for representation of logic are flowcharts
and pseudocode.

To the above four elements we need to add

a fifth one, which must be superimposed on

the above framework in that it permeates all

OCTOBER 1989

JOURNAL OF SYSTEMS MANAGEMENT 7



of the four elements discussed above.

5. Controls. This refers to the comparison
of the actual against a standard and the
taking of a corrective action in case there
are deviations.

The five elements just discussed constitute the
principal elements that must be taken into account
in designing an information system. To see how
these ‘‘elements’’ become ‘‘phrases,”” we now
turn to the following section.

Linearity vs. Interactivity

Conventional wisdom, as manifested in many
textbooks on systems design, has it that the proc-
ess of designing an information system follows
a somewhat linear, sequential methodology. The
argument runs something like this. The first phase
of design — which somewhat overlaps with anal-
ysis — is developing screens (or forms) via which
the user enters the data into the system and is
also provided with information by the system.
The overlap with the analysis phase is that this
phase is dominated by users’ requirements and
specifications. It is what the users want.

Having determined the contents of screens (or
forms), conventional wisdom leads us to the next
phase in which the contents of system-user in-
terfaces (screens/forms) are used as the basis for
designing the record layouts in the database. Such
a transition (from screen design to database de-
sign) is guided by the principles of economy, lack
of redundancy, etc. which collectively come un-
der the rubric of ‘‘normalization.’’ In a normal-
ized database, we have a storage place for all of
the data fields that appear on screens/forms, and
each field is stored in an appropriate record type.
Now the question is: how does data get trans-
ferred back and forth between screens/forms and
the database?

The above question leads us logically to the
next two phases, where we are concerned with
the design of programs (algorithms). Before the
program details are developed, a program over-
view is needed. This happens in phase three,
where a structure chart shows the various con-
stituent modules of a program and how they are
interrelated. According to conventional wisdom,
the fourth phase is then one in which the algo-
rithmic details of each module are developed.
These algorithms generally start with a series of
READ (input) statements and produce a series of

WRITE (output) statements. In between these
types of statements are sandwiched a series of
data operations governed by the three control
structures of sequence, selection and iteration.
The data parameters input into (and output from)
a module must be exactly the same as those
shown on the structure chart, except that on a
structure chart the module is treated like a black
box in that its algorithmic details are suppressed.

According to the traditional view of informa-
tion systems design, the final phase has to do
with fine-tuning the design by incorporating con-
trols into its edements. Controls are designed into
screens in terms of error messages that appear
when incorrect data (types) are entered. Controls
can be designed into databases via control fields
(“‘flags’’) that serve special switching (on/off)
purposes. Controls enter program structure charts
through validation modules and error-message
writing modules. They enter algorithm design via
program testing techniques.

The sequential framework described above
may be represented diagrammatically as in Figure
1. Such a linearity is seldom feasible in the real
practice of systems design. In the domain of prac-
tical systems design, we are more likely to see
the above five elements forming a network and
affecting each other interactively. This may be

1. Interface Design

4

2. Database Design

- 3. Program Structure Design

y
4. Program Logic Design

|

5. Controls Design

Figure 1

8 OCTOBER 1989 d8in

JOURNAL OF SYSTEMS MANAGEMENT




Interface

Design
S. Controls / \\
Design 2. Database
\ / Design
4. Program 3. Program

Logic Structure

Design Design
Figure 2

diagrammatically represented as in Figure 2. A
clue to the credibility of the above scheme is
provided by the manner in which the traditional
framework itself treats controls design. Recall
that in designing controls, we go back to other
phases and refine the work already done in those
phases. This is essentially the thrust of this ar-
ticle’s agrument: that the five phases of infor-
mation systems design cannot be followed as
neatly as a purely sequential pattern would sug-
gest. Design practitioners have found that after
supposedly ‘‘completing’’ one phase, it may be-
come necessary to go back to it and revise it in
the light of the work done in the subsequent
stages.

This iterative principle applies not only to the
various substages of the design activity, but also
to the major phases of the system development
life cycle, of which design is one phase. The
other phases are analysis, programming, imple-
mentation and maintenance. For instance, tra-
ditional wisdom used to dictate that one would
complete the analysis phase before proceeding to
the design phase. The popularity of prototyping
attests to the fact that such linearity is not always
ideal. In prototyping, the systdms specialist
would design a quick and dirty version of the
desired system based on the findings in the anal-
ysis phase, only to go back to the analysis phase
and further complete it according to the users’
refined formulations of the requirements after
they have worked with the prototype system. It
is exactly this type of phenomenon that is referred
to as ‘‘conceptual feedback effects’’ in the title
of this article. ‘‘Feedback’ because one phase
feeds the earlier (back) phases; ‘‘conceptual’’ be-
cause what is under discussion is feedback of a
conceptual (rather than personal) nature.

An Illustrative Case

In this section, several examples of feedback
effects from a hotel reservations/check-in/check-
out system will be presented. The system does
not yet exist; rather, we pretend it is in the process
of being developed by the designer. This way,
we can capture the designer’s thought processes
in going back and forth between different phases.
In what follows, we will discuss six examples of
such iterative thinking.

Suppose the hotel policy is that any time a
guest (making a reservation) requests a room type
that is not available, the more expensive type of
room will be assigned, although the guest will
be charged the same rate as for the room type he
requested. For instance,.if he requested a single
room and we are going to be out of single rooms
during his staying period, then we will assign
him a double room while charging him for a
single room. When it comes to drawing the struc-
ture chart for making reservations, it is natural
to have a module ‘‘validate room type availabil-
ity’’ and another one ‘‘validate alternate room
type availability.”” But when we proceed to writ-
ing the logic, we realize that both follow an iden-
tical logic, except that one takes as input the room
type requested, while the other takes as input the
more expensive room type requested. So, we de-
cide to write the logic for a room type requested,
and if it turns out that the room type requested
is not available, then we increment the room type
by one (say from single to double) and repeat
exactly the same logic. At this time, we find it
necessary to go back to-the structure chart and
combine the two modules into one.

When writing the structure charts, we realize
we have too many error-writing modules with
very minor differences among them. This may
make us go back to the screens and bring more
standardization to our error messages. For ex-
ample, both ‘‘incorrect guest number’’ and ‘‘in-
correct room type’’ can be replaced by the more
generic ‘‘incorrect data entered.”” Of course, for
certain reasons, the analyst and the users may
insist on the specifics, in which case this strategy
will be avoided. ’

The check-in screen may not have the check-
in date because this date happens to be today’s
date (= system date). As a result, we may not
capture and store it in our database until we need
to write logic for computing customer balance.

OCTOBER 1989

JOURNAL OF SYSTEMS MANAGEMENT 9



To compute this amount, we need the duration
of stay, which is derived from check-in and
check-out dates. How could customer balance be
computed if we had not sorted the check-in date?
We may be tempted to use the (expected) arrival
date (as provided by the guest while making the
reservation) to compute the balance. But this is
not generally wise for the check-in date, and the
(supposed) arrival date may not be identical.
Having realized that we need to track the check-
in date, we go back to the database design and
place it there.

It is necessary to track the total number of
rooms of each type in order not to overbook. It
is tempting to enter this set of figures in the code
at the point where they are actually used. How-
ever, due to physical construction, expansion and
continual maintenance, this set of numbers
changes rather frequently. It is, therefore, much
easier to store these fields in the database and
change them from there, rather than be forced to
go into the program and revise the code. The
same argument applies to room rates. When the
number of distinct room types is rather small, it
is tempting to ‘‘hard code’’ this data. The real-
ization of frequent change may make us, instead,
use variables in the code and store the actual room
rates in the database.

As another example, imagine a situation in
which the (access) key to a record is changed.
For instance, when a guest walks in to register,
instead of verifying the reservation by name, we
may decide to verify it by the confirmation num-
ber (which is unique, unlike the guest name). If
so, this means we need to change that screen
where an error message regarding the key ap-
pears. Therefore, instead of ‘‘Error: Invalid
Name,”” we will need a message like ‘‘Error:
Invalid Confirmation Number.”’

Next, imagine a situation in which there is a
check-in record distinct from a check-out record.
Each may contain very little data. Therefore, due
to the same programming considerations, it may
be wise to combine them into a single record
type. Meanwhile guest balance, which we may
have put in the check-out record, will need to be
transferred to a different record type. This is be-
cause the new, combined check-in/check-out re-
cord type needs to be purged rather frequently,
whereas guest balance has a longer useful life.
For that reason, it may be advisable to transfer

it to the guest file.

When designing the interface, the designer
may consider the guest who is to check in as an
entity, and devote one line on the form or one
blank area on the screen to capture the guest’s
name. This implies that the name will consist of
only one field in the database. However, when
the database is designed, and field size of the
name is considered, the designer may realize that
the option of splitting the name into first name,
middle initial, last name and salutation will en-
hance the design. At this point, the designer must
return to the Interface design and modify it to
reflect four fields where one had previously been
acceptable. This change may also happen with
address. A hotel system may be enhanced if it
allows an extra field to capture the company name
of the guest checking in. Inclusion of company
name should lead the designer to include com-
pany title. Each of these changes requires
changes to the interface design and also to the
program logic design so that all fields will be
captured within the program. While the designer
may not consider it at the moment, the resulting
database that contains the name separated into
four separate fields and an address that includes
company name or title becomes a powerful ad-
vertising tool because now this data can become
the basis for personalized letters and special pro-
motions.

Designing of controls reinforces the iterative
nature of designing systems. Technically, vali-
dation is not considered until after all phases are
completed. If a field must be validated because
it is entered in code form, then that fact must be
included in the interface design. The database
should also reflect this validation; therefore, valid
ranges for codes, or related database that contains
this data, must be included in the database design
and in the interface design.

Validation of fields that require a ‘‘yes’’ or
“‘no’’ answer brings up a related problem. If the
field can only have a yes/no answer, does it make
sense to have one of those answers as a default
on the screen so that the user can accept that
value rather than enter it? If the designer decides
to make this change, then the screen design must
reflect the default value and the database must
also be modified to include this detail. In addi-
tion, program logic design must include default
values. (continued on page 37)

3

10 OCTOBER 1989 da5m

JOURNAL OF SYSTEMS MANAGEMENT



The contrasting management style still sup-
ports an interest in the facts and figures. How-
ever, this manager treats his/her employees with
an open-door policy and with a concern about
personal feelings. The employees are dedicated
to a company ‘‘spirit’” and work for the good of
the company because the company looks out for
their good. The crucial difference, as far as this
article is concerned, is that this type of manage-
ment places a higher priority on honesty and in-
tegrity than it does on numbers. If an employee
is not an achiever in a certain area, a better fit 1s
searched for; the employee is not automatically
““‘dumped.’’ In other words, success in the com-
pany requires honesty, whereas in the first man-
agement style there is some question as to
whether honesty may not be detrimental to suc-
cess.

Record Keeping — One ‘‘rule’’ of systems
analysis that should be placed in all of the text-
books is the following:

By making the desired action easier to do
than the undesired action, the need for con-
trol is eliminated.
This means simply that if you want to track or
measure a level of type of performance, do it in
a way that doesn’t hinder performance. Don’t
make employees fill out forms when another
method, even though more expensive, may be
available, To justify this, reflect once again on
the goals of the organization. Is the goal to fill
out reports or to improve productivity?
This general principle can be applied to
many other areas. For example, if it is easier
to be honest (proper and accurate reporting)
than to be dishonest (guessing at the num-
bers because filling out the report is a has-
sle), the numbers will be meaningful. Sys-
tem and data security is al§o an area where
this line of thinking should be applied.

Summary

These are a few suggestions on what can be
done to improve the ethics and thereby the quality
of the numbers of an organization:

1. Output, not the generation of numbers,
is the goal of the company.

2. Use measurements to motivate, not con-
trol.

3. Technology should make the employee’s
life easier, not put him at risk. Technol-

ogy should be the employee’s tool, not
management’s toy. :

4. Management must be as ‘‘good as their
word,”” especially where commitments
to employees are concerned. (Parents
should always be honest to their children
if they want to be trusted.)

5. Plan the installation of new technology
with the employees, then controlling it
becomes easy.

6. Any change, including the ones sug-
gested here, should start small and sim-
scare rather than motivate if they aren’t
sold properly.

Conclusion

Controls are not the answer to solving the eth-
ics and data integrity problem. Motivation is the
answer. Attitudes need to be changed, not for the
employees, but for the managers who design and
monitor the control systems under which em-
ployees work. The employees simply respond to
the controls that are placed upon them, feeling
that what they are controlled on must be what is
important to the organization. The solution is
simple: Management must change the signals that
are being sent to their employees. @jsm

(continued from page 10)

Program structure frequently highlights an area
that has been neglected in both interface design and
database design. This area is archiving of data. Any
hotel system will be gathering large amounts of
data. How much must be kept? Which data is rel-
evant? Should it be kept only until the bill is paid?
The necessity for archiving data requires a new
database to be designed. This first modification
requires not only a new database but also the de-
cision of which fields are necessary in the archive
database. The new database will utilize existing
data as input, so no input screens are required, but
it is necessary to allow the user to restrict the data
being archived. This is a second modification,
which affects the interface design. These two mod-
ifications then require that the program logic in-
clude both a way to archive data and to retrieve
the data as desired. An additional step is next re-
quired. Once the data has been archived, they must
be deleted from any other databases. @jsm

OCTOBER 1989

JOURNAL OF SYSTEMS MANAGEMENT 37





