Simple Program Design

"Chapter 8: First steps in modularisation"

Chapter Outline

First steps in modularisation

Modularisation
Hierarchy charts or structure charts
Further modularisation
Communication between modules
Using parameters in program design
Steps in modularisation
Programming examples using modules Chapter summary
Programming problems

Modularisation

Modularisation means dividing a problem into subtasks. As problems become more complicated, the major task should be subdivided into subtasks to make it easier to understand the problem. Suppose the major task is to make an apple pie. Some subtasks of making the pie are: buying the ingredients, making the ingredients, and baking the pie.

The modularisation process

Division of a problem into smaller subtasks, or modules, is a relatively simple process. When defining the problem, write down the activities or steps to be performed. Group the activities into subtasks or modules. Module names should tell the task being done. For example.

[image: image1.jpg]Pint_pags_hacdings
Colalote_scls_tox
Volidate_input_data

The mainline

The mainline module controls the program by tieing all the other modules together. With the use of good module names, the mainline module becomes the top level outline for the program.

Let's revisit two algorithms from chapter 4.

Example 8.1 Read three characters

Design a program to read three characters and print them out in ascending order. The program contiues to cycle until XXX is entered for the three numbers.

A Defining Diagram

Here is the IPO chart.

[image: image2.jpg]Input Processing Output
char_1 Promp for choracters | char_1
chor_2 Accept thres characters | chor_2
char_3 Sort three characters char_3

Output threo characters

B Initial solution algorithm

Here is the original algorithm.

[image: image3.jpg]Read._thies_characess
Prom the oprator forchor_1, char_2, chor_3
et chor_L, chor_2, har_3
DOWHILE NOT (chor_1 =X AND cher_2 = X AND choe_3 = 1)
IF chor_1 > chor_2 THEN
tomp
chor_1
chor_2 = temp
BNDIF
F chor_2 > chor_3 THEN
tomp = chor_
dhor_2 = dhor_3
chor_3 = tomp
ENDIF
IF char_1 > chor_2 THEN
temp
char_1
dhor_2
ENDIF
Diploy o the sceen chor_Y, chor_2,chor_3
Prompt opratr for chor_I, chor_2, char_3
Got chor_1, cho_2, chor_3
ENDDO
D

It is cumbersome and awkward. The sorting logic gets in the way of understanding the program.

C Solution algorithm using a module

Now, let's move the sorting logic to another module. Call it Sort_three_characters. The mainline module is much easier to understand and the sort module is easier to follow as well!. Here is the revised algorithm.

[image: image4.jpg]Rood_thvee_characters
Prompt the operator for chor_1, char_2, cha_3
6ot chor_1, chor_2, chor_3
DOVHILE NOT (chor_1
Sort_three_characers
Diply o fhesceen chor_1, chor_2, chor_3
Promptoperatr forchor_1, chor_2, char_3
Got char_1, chur_2, chor_3

ENDDO.

AND chor_2 = X AND cher_3 =)

&0

[image: image5.jpg]Sort_thee_charoctrs
1F chor_1 > chor_2 THEN
chor_1
L1 =chor_2
chor_2 = famp
ENDF
IF chor_2 > chor_3 THEN
tomp = chor_2
chor_2 = char_3
chor_3 = femp
ENDIF
IF chor_1 > chor_2 THEN.
tomp = chor_|
chor_] = dar_2
char_2 = temp
ENDIF
)

Hierarchy Charts or Structure Charts

THE BOOK OVER SIMPIFIEDS! Hierarchy charts show the relation of modules from top to bottom. Structure charts also show the control and data flow between modules, including loops and decision! That is, structure charts include all communications between modules.

Here is a hierarchy charts showing a companies' organization.

[image: image6.jpg]President

Vice resident Vi prosdont Vice-president
Soles Foree | Personnel
Manager A | | Monager B | | Manager C || Manager D || Manager E || Manager F

Here is the hierarchy chart for the read_three_characters program.

[image: image7.jpg]Read_thres_
characters

Sort_three_
characters

Further modularisation

The above example could also have been designed to use a mainline and three modules, one each of the main processing steps in the defining diagram as follows:

Read three characters
Sort three characters
Print three characters

A Defining Diagram

Here is the IPO chart.

[image: image8.jpg]Input Processing Output
char_1 Promp for choracters | char_1
chor_2 Accept thres characters | chor_2
char_3 Sort three characters char_3

Output threo characters

B Solution algorithm

Here is the new solution algorithm

[image: image9.jpg]Process_three_characters
Read_three_characters
DOWHILE NOT (char_1 = ‘X" AND char_2 = X' AND char_3 = ‘X)
Sort_three_characters
Print_three_characters
Read_three_characters
ENDDO
END

Read_three_characters
Prompt the operator for char_1, char_2, char_3
Get char_1, char_2, char_3

END

[image: image10.jpg]Sort_three_characters
IF char_1 > char_2 THEN

temp = char_1
char_1 = char_2
char_2 = temp

ENDIF

IF char_2 > char_3 THEN
temp = char_2
char_2 = char_3
char_3 = temp

ENDIF

IF char_1 > char_2 THEN
temp = char_1
char_1 = char_2
char_2 = temp

ENDIF

END

Print_three_characters
Qutput to the screen char_1, char_2, char_3
END

Here is the new hierarchy chart.

[image: image11.jpg]Process_three_
characters
Read_three_ Sort_three_ Print_three_
characters characters characters

Communication Between Modules

The fewer and simpler the communications between modules, the better. This flow of information, called intermodule communication, can be accomplished by the scope of the variable (local or global data) or the passing of [arameters.

Scope of a variable

The scope of a variable is the portion of the program in which that variable has been defined and to which it can be referred.

Global data

Global data can be accessed by every module in the program. Not all data should be global!

Local data

Variables defined within a subordinate module are called local variables. They can only be referenced by this modules and modules called by this module.

Side effects

Side effects are where a module changes values of variables in other parts of the program.

Passing parameters

Passing parameters means a calling module transfers information to the called module. Under some circumstanes, the called module also returns information to the calling module. Structure charts show this by using arrows

[image: image12.jpg]ot

For dota parameters For stotus parameters

Using Parameters In Program Design

Here is the Read_three_characters program again. This time we show the communications between the modules.

Examples 8.2 Read three characters

Design a program to read three characters and print them out in ascending order. The program contiues to cycle until XXX is entered for the three numbers.

A defining diagram

Here is the IPO chart.

[image: image13.jpg]Input

Processing

Output

char_1
char_2
char_3

Prompt for characlers
Accept three characters
Sort three characters

Output three characters

char_1
char_2
char_3

B Group the activities into modules

There are two main activities: Read_three_characters, and Sort_three_characters..

C Construct a hierarchy chart

Here is a partical hierarchy chart showing the information interchange.

[image: image14.jpg]Read_three_
choradters

char_1
char_2 I i
chor_3

Sort_three_
choracters

D Establish the logic of the solution algorithm using pseudocode (mainline and subordinate module)

Here is the algorithm including the parameters being passed.

[image: image15.jpg]Rood_three_choracers
Promt he opertar for chr_, char_2, cha_3
Got chor_1, chr_2, chor_3
DOWHILE NOT (chr_1 = X AND chor_2 = X AND chor_3 =)
Sor_ree_dharactess (chr_, char_2, chor_3)
Quiput o he sceen chor_1 chor_2, cor_3
Promt aperator for char_, chor_2, chor_3
Getcho_1, dir_2, i3
ENDDO
BN

[image: image16.jpg]‘Sort_three_charocters (char_1, char_2, chor_3)
F dhor_1 > chor_2 THEN

IF chur_2 > chor_3 THEN
temp = chor_2
chor_

do

L

Fchu_1 > dr_2 THEN
amp = chor_1
dor_) = dhr_2

dior_2
ENDIF
N

temp

Steps In Modularisation

Here are the steps in top-down modular design.

1. Define the problem using the IPO chart.
2. Group activites into subtasks or functions.
3. Construct a hierarchy chart.
4. Establish the mainline algorithm.
5. Develope the algorithms for each successive modules.
6. Desk check the solution algorithm.

Programming Examples Using Modules

Here are some sample program designs using modules.

Example 8.3 Calculate employee's pay

The program is to read an employee record, calculate weekly pay, and print out everything.

A Define the problem

Here is the IPO chart.

[image: image17.jpg]Input Pracessing Output
emp_no Read employee dotals | emp_no
poy_rate Valdate nput fields poy_rote
rs_vorked Cololote employes pay | hrs_worked

Print employee dofails

emp_weekly_pay
error_messoge

B Group the activities into modules

The modules are Compute_employee_pay, Validate_input_fields, and Calculate_employee_pay.

[image: image18.jpg]1 Compute_employee_pay (mainling)
2 Validate_input_felds
3 Calculate_employee_pay

C Construct a hierarchy chart

Here is the simple structure chart

[image: image19.jpg]Campute_
‘employee_
ooy
oy_rale
vald_input_feds Tt vaed
/ \ g weekly=ony
Validate_ Colclate
inpul_
fields.

D Establish the logic of the mainline of the algorithm, using pseudocode

Here is the mainline algorithm.

[image: image20.jpg]Compute_omgloyeo_soy
‘S vlid_inpu_flds fo e
Read amp_no, pay_ro, s_vorked
DOWHILE mors rocords
alcat_input_fiels (void_input_felds)
IF vold_ingut_felds THEN
Calults_employse_poy (poy_ice, frs_worked, ermp_weekly_poy)
it emp_no, po_ote hrs_worked, emp_weekly_poy
£1SE
sotvlid_input_felis 10 e
ENDIF
Read emp_no, poy_ate, hrs_vorked
ENDDD
B

E Develop the pseudocode for each successive module in the hierarchy chart

Here is the algorithms for the rest of the modules.

[image: image21.jpg]Voldate_inpu_fieds (vlid_inpot_fids)

B

Set erto_massoge fo lrk

IF pay_are > $25 THEN
emor_message = oy rae exceeds $25.00°
Fin omp_no, poy_ote, his_voked, enor_messag
veld_input_fields = foke

IF bis_worked > 60 THEN
erar_messoge = Hous worked exeeds it of 60°
Frintemp_, poy_tat, is_vorked, eror_messoga
vaid_inpu_fls = fola

ENDIF

[image: image22.jpg]Colculate_employee_pay (pay_tote, hrs_worked, emp_weekly_ay)
IF hes_worked < = 35 THEN
‘emp_weekly_poy = poy_tate * his_worked
s
‘overfime_hrs = frs_worked — 35
ovarfine_poy — ovetime_hrs = poy_ote = 1.5
emp_ueskly_poy = (oy_ofa = 35 + ovarime_poy
ENDIF
END

F Desk check the solution algorithm

Now, we create some valid input test data, calculate the expected results, and desk check the algorithms.

Input data

Here are four test cases, since EOF is a test case!

[image: image23.jpg]Record pay_rate hrs_worked
emp1 2 | s35.00
emp2 £ sa0.00
emp3 £ $65.00

EOF

Expected results

Here are the expected results.

[image: image24.jpg]emp1
emp2
cmp3
emp3

)
2
30
30

$35.00
540,00
$65.00
$65.00

570000
585000
Pay rate exceeds $25.00
Hours worked exceeds
limit of 60

Desk check table

Here are the results of doing the desk checking.

[image: image25.jpg]Statement valid_|pay_ D0- [oror_ [emp_ [ovt_|ovi_
input_| rate WHILE | message | weekly_| hrs | pay
oK? pay
nitialse true
Read 0| s
DOWHILE ves
Voldote_inpur_felds blonk
IF
Calwlato_emp_pay s700
Print print | print prin
Read » | s
DOWHILE ves
Voldate_input_fields Blark
I
Galclate_emp._pay se50 | 5 [sis0
Print print | “print print
Read 30 | ses
DOWHILE yes
Valdate_input_fields | folse | print | print invalid
pay
falso | prnt | print invalid
hours
IF true
Read EOF | EOF
e

Example 8.4 Produce orders report

A program is to read a product orders file and produce an orders report. Here is a sample of the output report.

[image: image26.jpg]PRODUCT
o

ACHE SPARE PARTS.
ORDERS REPORT

PRODUCT TS
DESCRIFTION ORDERED
ey 0
jrs— xx

PAGExx

TOTHL AUOUNT
DUE
oo
o

A Define the problem

Here is the IPO chart.

[image: image27.jpg]Input

Processing

Output

Order record.
 prod_number
o prod_descriplon
no_of_unis

© retail_price
ight_charge
© packaging_cost

Print headings os requirad
Read order records
Caleulate amount due
Calculate discount
Calculate freight chorge
Colculate packoging

Print order detals
Compute page incroments.

moin headings
column hecdings
page number
detal ines

o prod_number
o prod_descrigtion
o no_of_units

© totol_amount_due

B Group the activities into modules

The modules are Print_page_headings, Calculate_total_amount_due, and the mainline of Produce_orders_report.

C Construct a hierarchy chart

Here is a hierarchy chart! It really is!

[image: image28.jpg]Print_
page_
headings

Caluolate_
total_omount _
due

D Establish the logic of the mainline of the algorithm, using pseudocode

Here is the algorithm for the mainline module.

[image: image29.jpg]Produce_orders_report
561 poge_count fo 200
Setline_coun fo zer0
Fit_page_headings (ine_count)
Read ordt record
DOWHILE mo ecords
Flne_count > 45 THEN
Fin_age_heodings (ine_count)
ENDIF
Caore_torol_ameunt_due (order 1o, fotol_omount_due)
Pt grod_nmber, prod_cesciprion, no_of_unif, torl_amount_
244 1t ne_court
Reod ader record.
ENDDO
B

E Develop pseudocode for each successive module in the hierarchy chart.

Here are the other two algorithms.

[image: image30.jpg]Pint_page_handings (ine_count)

BN

T 1o poge_count

Pint moin hooding ‘ACHE SPARE PARTS'
Pt heading “ORDERS REFORT”

Pt colomn hoodings 1

it coumn hoadings 2.

it bk ne

Setlne_count fo ze10

[image: image31.jpg]Coloulate_total_omount_due (order record, torol_omt_due)
cmount_due = no_of_unis * refa_pice
F amaunt_due > $100.00 THEN
dscount = amount_due ~ 0.1
lsE
dstount =20
ENOF
amount_due = amount_due — dcount
freight_due = feight_charge *no_ol_urits
packaging_due = pockoging_chge * 10_of_uris
totol_amoun_dve = amount_due -+ eight_due -+ pockging_dus
&0

F Desk check the solution algorithm

input data

Here are four sets of test data.

[image: image32.jpg]Record | prod_[prod_ | no_of_|[retail_| freight_| packaging_
no_ | descrption | units | price | churge | charge
1 100 | rubberhose | 10 | 100 | 020 050
2 200 | steelpipe 20 |20 | oo 020
3 300 [steelbok | 100 | 300 | o010 020

EOF

Expected results

Here are the expected results with sample titles and column headings.

[image: image33.jpg]PRODUCT
N0
100
0
30

ACHE SPARE PARTS.
ORDERS REPORT

PRODUCT s
DESCRIPIION. ORDERED
Robbes hose: 10
Stee ipe bl
Steel bt 100

PAGE T

TOTAL AUOUNT
DUE
s17.00
56,00
530000

Desk check table

Here are the results of desk checking the program.

[image: image34.jpg]prod_

frelgh_
chorge

pockoging_
dhorge

totol_

Tnitilise
Print_page_
hoadings
it
Read
DOWHILE
IF
Galalote
Prnt
i
Read
DOWHILE
IF
Calakote
Print
add
Road
DOWHILE
[3
Caleulote
print
Add
Read
DOVIHILE
D

ves

yes

yes

100

print

200

print

300

print

BF

10

print

2

print

100

print

100

200

300

020

010

010

050

020

00

17.00
prnt

4600
print

30000
print

